9 resultados para dolphin

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consistent leadership of group travel by specific individuals has been documented in many animals. Most species exhibiting this type of leadership have relatively stable group membership. Animals using fission-fusion grouping are not expected to use specific leaders because associations would not be frequent. Certain conditions, however, may allow this type of control over group travel to occur. First, a population would need to be small enough to allow regular associations between individuals. Second, leadership may be useful if the environment where the population in question lives is complex and requires learning to access the resources efficiently. To determine whether fission-fusion species existing under these conditions utilize specific individual leadership, I examined a small residential population of bottlenose dolphins (Tursiops truncatus) in the Lower Florida Keys (LFK) where the benthic habitat is highly complex. My goals were to (1) determine whether specific individuals in this population led group travel more often than expected; (2) determine whether certain factors predicted which animals would lead most often and (3) investigate the benefits of leading to leaders and to followers in a fission-fusion society. Multiple types of data were collected to answer questions posed including dolphin behavior (for leadership analyses), fish sampling (to examine dolphin habitat use under leadership), and dolphin biopsy sampling (for genetic analyses). Results of analyses provided strong evidence for consistent leadership in this population. Leaders were female, most were mothers and on average they had larger measures of centrality within the LFK population. Leaders benefited by leading individuals who were more closely related than expected. Followers benefited from efficient access to profitable habitat. Results build on previous leadership research by expanding our knowledge about the type of species in which specific individuals lead and predictors for what types of individuals may lead. Additionally, results provide the first detailed information about benefits group members obtain by both leading and following.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many species, particular individuals consistently lead group travel. While benefits to followers often are relatively obvious, including access to resources, benefits to leaders are often less obvious. This is especially true for species that feed on patchy mobile resources where all group members may locate prey simultaneously and food intake likely decreases with increasing group size. Leaders in highly complex habitats, however, could provide access to foraging resources for less informed relatives, thereby gaining indirect benefits by helping kin. Recently, leadership has been documented in a population of bottlenose dolphins (Tursiops truncatus) where direct benefits to leaders appear unlikely. To test whether leaders could benefit indirectly we examined relatedness between leader-follower pairs and compared these levels to pairs who associated but did not have leader-follower relationship (neither ever led the other). We found the average relatedness value for leader-follower pairs was greater than expected based on chance. The same was not found when examining non leader-follower pairs. Additionally, relatedness for leader-follower pairs was positively correlated with association index values, but no correlation was found for this measure in non leader-follower pairs. Interestingly, haplotypes were not frequently shared between leader-follower pairs (25%). Together, these results suggest that bottlenose dolphin leaders have the opportunity to gain indirect benefits by leading relatives. These findings provide a potential mechanism for the maintenance of leadership in a highly dynamic fission-fusion population with few obvious direct benefits to leaders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n = 190) and manatees (n = 56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immunocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included T$\rm\sb{h}$, T$\rm\sb{c/s}$, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating T$\rm\sb{h}$ cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n=180) and manatees (n=56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immuocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included Th, Tes, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating Th cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health status of wild and captive Atlantic Bottlenose dolphins ( Tersiops truncatis) is difficult to ascertain. Mass strandings of these animals have been attributed to pollutants, as well as bacterial infections. Using human Enzyme Linked Immuno-Assays (ELISA) for immunological cytokines, I measured soluble cytokine levels with respect to their health status. In a retrospective analysis of dolphin sera, there was a trend of higher cytokine levels in “sick” animals. I cultured dolphin lymphocytes in the presence of a mitogen (PHA), a super antigen (Staph-A), Lipopolysaccharide (LPS), and a calcium flux inducer (PMA). Levels of messenger RNA, from these cultured cells, were assayed with Polymerase Chain Reaction (PCR) using primers for the human cytokines IL-2, IL-4, IL-6, IL-10, Tumor Necrosis Factor, and Interferon gamma. Only IL-4, IL-6, and IL-10 messages were obtained, inferring similar nucleotide homology to the human primer sequences. The PCR products were sequenced. Sixteen IL-4 sequences, twelve IL-6 sequences and seven IL-10 sequences were obtained and analyzed. Each cytokine exhibited the same nucleotide sequence in all dolphins examined. There was no difference in the cytokine profile in response to the various stimuli. The derived amino acid composition for each of the dolphin cytokines was used for molecular modeling, which showed that dolphin IL-4, IL-6, and IL-10 were structurally similar to the corresponding proteins of Perissodactyla. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottlenose dolphins (Tursiops truncatus) are large-bodied predators that are locally abundant in the coastal Everglades. Because of their potential to exert strong top-down effects on their communities, it is important to understand how spatiotemporal variation in biotic and abiotic factors affects the abundance and behavior of dolphins. This study combined two years of transect surveys with photographic identification methods to assess spatiotemporal variation in the abundance and group sizes of bottlenose dolphins across four large regions of the coastal Everglades including the Shark and Harney Rivers, Whitewater Bay, and coastal oceans of the Gulf of Mexico and Florida Bay. Dolphin abundance was similar across wet and dry seasons, except in river habitats where abundances were higher during the dry season. Group sizes were largest in Florida Bay and open water. Dolphins may be relatively resilient to abiotic changes in the coastal Everglades, with the possible exception of river habitats.