2 resultados para diversified grazing ecosystems

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesizing data from multiple studies generates hypotheses about factors that affect the distribution and abundance of species among ecosystems. Snails are dominant herbivores in many freshwater ecosystems, but there is no comprehensive review of snail density, standing stock, or body size among freshwater ecosystems. We compile data on snail density and standing stock, estimate body size with their quotient, and discuss the major pattern that emerges. We report data from 215 freshwater ecosystems taken from 88 studies that we placed into nine categories. Sixty-five studies reported density, seven reported standing stock, and 16 reported both. Despite the breadth of studies, spatial and temporal sampling scales were limited. Researchers used 25 different sampling devices ranging in area from 0.0015 to 2.5 m2. Most ecosystem categories had similar snail densities, standing stocks, and body sizes suggesting snails shared a similar function among ecosystems. Caribbean karst wetlands were a striking exception with much lower density and standing stock, but large body size. Disparity in body size results from the presence of ampullariids in Caribbean karst wetlands suggesting that biogeography affects the distribution of taxa, and in this case size, among aquatic ecosystems. We propose that resource quality explains the disparity in density and standing stock between Caribbean karst wetlands and other categories. Periphyton in Caribbean karst wetlands has high carbon-to-phosphorous ratios and defensive characteristics that inhibit grazers. Unlike many freshwater ecosystems where snails are key grazers, we hypothesize that a microbial loop captures much of the primary production in Caribbean karst wetlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.