7 resultados para distribution change
em Digital Commons at Florida International University
Resumo:
The spectral quality of radiation in the understory of two neotropical rainforests, Barro Colorado Island in Panama and La Selva in Costa Rica, is profoundly affected by the density of the canopy. Understory light conditions in both forests bear similar spectral characteristics. In both the greatest changes in spectral quality occur at low flux densities, as in the transition from extreme shade to small light flecks. Change in spectral quality, as assessed by the red: far-red (R:FR) ratio, the ratio of radiant energy 400-700: 300-1100 nm, and the ratio of quantum flux density 400-700:300-1100 nm, is strongly correlated with a drop in percentage of solar radiation as measurable by a quantum radiometer. Thus, by knowing the percentage of photosynthetic photon flux density (PPFD) in relation to full sunlight, it is possible to estimate the spectral quality in the forest at a particular time and microsite.
Resumo:
More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.
Resumo:
Located at a subtropical latitude, the expansive Florida Everglades contains a mixture of tropical and temperate diatom taxa, as well as a unique flora adapted to the calcareous, often excessively hot, seasonally flooded wetland conditions. This flora has been poorly documented taxonomically, although diatoms are recognized as important indicators of environmental change in this threatened ecosystem. Gomphonema is a dominant genus in the freshwater marsh, and is represented by highly variable species complexes, including Gomphonema gracile Ehrenberg, Gomphonema intricatum var. vibrio Ehrenberg sensu Fricke, Gomphonema vibrioides Reichardt & Lange-Bertalot and Gomphonema parvulum (Kützing) Grunow. These taxa have been shown to exhibit wide morphological variation in other regions, resulting in considerable nomenclatural confusion. We collected Gomphonema from 237 sites distributed throughout the freshwater Everglades and used qualitative and quantitative morphological data to identify 20 distinguishable populations. Taxonomie assignments were based on descriptions and/or observations of type material of relevant taxa when possible, but deviations from original morphological range descriptions were common. We then compared morphological variation in Everglades Gomphonema taxa to that reported for the same taxa in other regions and suggest revisions of taxonomie concepts when necessary.
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2 = 0.97, r jackknife 2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2 = 0.75, r jackknife 2 = 0.46), WTP (r apparent 2 = 0.75, r jackknife 2 = 0.49), and WTOC (r apparent 2 = 0.79, r jackknife 2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.
Resumo:
In the mid 19th century, Horace Mann insisted that a broad provision of public schooling should take precedence over the liberal education of an elite group. In that regard, his generation constructed a state sponsored common schooling enterprise to educate the masses. More than 100 years later, the institution of public schooling fails to maintain an image fully representative of the ideals of equity and inclusion. Critical theory in educational thought associates the dominant practice of functional schooling with maintenance of the status quo, an unequal distribution of financial, political, and social resources. This study examined the empirical basis for the association of public schooling with the status quo using the most recent and comparable cross-country income inequality data. Multiple regression analysis evaluated the possible relationship between national income inequality change over the period 1985-2005 and variables representative of national measures of education supply in the prior decade. The estimated model of income inequality development attempted to quantify the relationship between education supply factors and subsequent income inequality developments by controlling for economic, demographic, and exogenous factors. The sample included all nations with comparable income inequality data over the measurement period, N = 56. Does public school supply affect national income distribution? The estimated model suggested that an increase in the average years of schooling among the population age 15 years or older, measured over the period 1975-1985, provided a mechanism that resulted in a more equal distribution of income over the period 1985-2005 among low and lower-middle income nations. The model also suggested that income inequality increased less or decreased more in smaller economies and when the percentage of the population age < 15 years grew more slowly over the period 1985-2000. In contrast, this study identified no significant relationship between school supply changes measured over prior periods and income inequality development over the period 1985-2005 among upper-middle and high income nations.
Resumo:
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.