7 resultados para distributed generation

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating the research and resources of hundreds of scientists from dozens of institutions, network-level science is fast becoming one scientific model of choice to address complex problems. In the pursuit to confront pressing environmental issues such as climate change, many scientists, practitioners, policy makers, and institutions are promoting network-level research that integrates the social and ecological sciences. To understand how this scientific trend is unfolding among rising scientists, we examined how graduate students experienced one such emergent social-ecological research initiative, Integrated Science for Society and Environment, within the large-scale, geographically distributed Long Term Ecological Research (LTER) Network. Through workshops, surveys, and interviews, we found that graduate students faced challenges in how they conceptualized and practiced social-ecological research within the LTER Network. We have presented these conceptual challenges at three scales: the individual/project, the LTER site, and the LTER Network. The level of student engagement with and knowledge of the LTER Network was varied, and students faced different institutional, cultural, and logistic barriers to practicing social-ecological research. These types of challenges are unlikely to be unique to LTER graduate students; thus, our findings are relevant to other scientific networks implementing new social-ecological research initiatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.