2 resultados para dilute-nitric-acid hydrolysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic is a human carcinogen that has been found in various waters and wines throughout the world. Therefore, close examination of these liquids is necessary to prevent the intoxication of animals and humans. Wines and waters often contain significant amounts of toxic arsenic species. The source of arsenic in wines and waters is generally believed to be the result of arsenic-based pesticides and herbicides. Recent studies have also shown that toxic arsenic may be used in the cultivation and acceleration of the ripening process of fruit, ultimately contaminating fruit-based beverages. The determination of total arsenic can be found by using several methods, including AFS or ICP/MS. No pretreatment of water is necessary, except for filtering by means of a Fisherbrand PTFE 0.45 connected to a Becton-Dickinson 10 mL syringe to filter particles from water. The pretreatment of the wine includes ethanol evaporation and an addition of 0.1% nitric acid. A number of commercial drinking waters and regional lake water were analyzed. Since we have confirmed the presence of arsenic in a variety of waters and wines from different countries, we decided to test a number of commercially available beverages for the presence of arsenic. The focus ofthis project is to establish the presence of arsenic in various commercially available beverages. ICP-MS was used to determine total arsenic using certified standards. Internal standards Indium and Yttrium were also used to verify the concentration readings, which varied from 0- 20 ppb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenium is known to occur in the enzyme, glutathione peroxidase, and plays an important role as an antioxidant. The objective of this investigation was to determine if amounts of selenium are selectively accumulated in different regions of the retina or uniformly distributed with eccentricity. 20 human retinas were analyzed for selenium. 18 of these were sectioned into a disc and two concentric annuli centered on the fovea using trephines having diameters of 3, 11, and 21 mm. The sections had areas of7.1, 93, and 343 mm2, respectively. Corresponding sections of these retinas were combined and analyzed together in sets of n = 5 and n = 11. For two donors, the whole retina of one eye was analyzed for selenium and the other retina was sectioned for analysis as described above. Selenium was determined using atomic fluorescence spectroscopy after digestion of the retinal tissues in nitric acid. The two whole retinas were found to have an average of 0.89 ± 0.49 pmoles/mm2 of selenium as compared to the companion which had 0.84 ± 0.28 pmoles/mm2 as determined from the sum of the selenium amounts measured in the individual sections. The inner, medial, and outer portions of these two sectioned retinas were found to contain an average of5.28 ± 1.1, 1.28 ± 0.44, 0.63 ± 0.22 pmoles/mm2, respectively. The five retinas that were sectioned and pooled for analysis were found to have average amounts of3.64, 1.26, and 0.56 pmoles/mm2 • The 11-sectioned retinas were found to have 1.16, 0.61, and 0.38 pmoles/mm2 respectively in the same three sections. This limited data set indicates that selenium is not uniformly distributed within the human retina but rather concentrated to a greater extent within the macula. If confirmed, these data would support the hypothesis that selenium may be an important antioxidant involved in protection of the macula from radical oxidants.