8 resultados para digital learning tools

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary aim of this dissertation is to develop data mining tools for knowledge discovery in biomedical data when multiple (homogeneous or heterogeneous) sources of data are available. The central hypothesis is that, when information from multiple sources of data are used appropriately and effectively, knowledge discovery can be better achieved than what is possible from only a single source. ^ Recent advances in high-throughput technology have enabled biomedical researchers to generate large volumes of diverse types of data on a genome-wide scale. These data include DNA sequences, gene expression measurements, and much more; they provide the motivation for building analysis tools to elucidate the modular organization of the cell. The challenges include efficiently and accurately extracting information from the multiple data sources; representing the information effectively, developing analytical tools, and interpreting the results in the context of the domain. ^ The first part considers the application of feature-level integration to design classifiers that discriminate between soil types. The machine learning tools, SVM and KNN, were used to successfully distinguish between several soil samples. ^ The second part considers clustering using multiple heterogeneous data sources. The resulting Multi-Source Clustering (MSC) algorithm was shown to have a better performance than clustering methods that use only a single data source or a simple feature-level integration of heterogeneous data sources. ^ The third part proposes a new approach to effectively incorporate incomplete data into clustering analysis. Adapted from K-means algorithm, the Generalized Constrained Clustering (GCC) algorithm makes use of incomplete data in the form of constraints to perform exploratory analysis. Novel approaches for extracting constraints were proposed. For sufficiently large constraint sets, the GCC algorithm outperformed the MSC algorithm. ^ The last part considers the problem of providing a theme-specific environment for mining multi-source biomedical data. The database called PlasmoTFBM, focusing on gene regulation of Plasmodium falciparum, contains diverse information and has a simple interface to allow biologists to explore the data. It provided a framework for comparing different analytical tools for predicting regulatory elements and for designing useful data mining tools. ^ The conclusion is that the experiments reported in this dissertation strongly support the central hypothesis.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Online learning systems (OLS) have become center stage for corporations and educational institutions as a competitive tool in the knowledge economy. The satisfaction construct has received extensive coverage in information systems literature as an indicator of effectiveness but has been criticized for lack of validity; yet, the value construct has been largely ignored, although it has a long history in psychology, sociology, and behavioral science. The purpose of this dissertation is to investigate the value and satisfaction constructs in the context of OLS, and their perceived by learners relationship for implied effectiveness of OLS. ^ First, a qualitative phase is employed to gather OLS values from learners' focus groups, followed by a pilot phase to refine a proposed instrument, and a main phase to validate the survey. Responses were received from 75 students in four focus groups, 141 in the pilot, and 207 the main survey. Extensive data cleaning and exploratory factor analysis were done to identify factors of learners' perceived value and satisfaction of OLS. Then, Value-Satisfaction grids and the Learners' Value Index of Satisfaction (LeVIS) were developed as benchmarking tools of OLS. Moreover, Multicriteria Decision Analysis (MCDA) techniques were employed to impute value from satisfaction scores in order to reduce survey response time. ^ The results provided four satisfaction and four value factors with high reliability (Cronbach's α). Moreover, value and satisfaction were found to have low linear and nonlinear correlations, indicating that they are two distinct uncorrelated constructs. This is consistent with the literature. Value-Satisfaction grids and the LeVIS index indicated relatively high effectiveness for technology and support characteristics, relatively low effectiveness for professor's characteristics, while course and learner characteristics indicated average effectiveness. ^ The main contributions of this study include identifying, defining, and articulating the relationship between value and satisfaction constructs as assessment of users' implied IS effectiveness, as well as assessing the accuracy of MCDA procedures to predict value scores, thus reducing by half the survey questionnaire size. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adults returning to school face challenges including overcoming math anxiety. Many choose online courses as they balance life and work schedules. Online math courses therefore can be restructured to prevent math anxiety by catering to individual learning styles, providing tools that aid concept attainment, and using problem-based learning strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This presentation will show how a grassroots initiative has budded into the Florida International University (FIU) Libraries being an instrumental part of online learning. It will describe some of the marketing and outreach efforts that have been successful and share ideas on how to build alliances and networks with online faculty and students. Along with outreach efforts, the presentation will demonstrate some of the successful tools used to meet the needs of online students. Some of the these tools include becoming embedded in courses, building course and program specific Libguides, using Adobe Connect to reach students, creating simple YouTube videos, and creating more professional videos with FIU Online. The presentation will conclude with sharing some tips on how to keep the workload manageable when distance-learning programs are growing at the same time as library budgets and resources are shrinking.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.