13 resultados para detritus

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils play a central role in the dynamics of biospheric carbon and in climate change. They contain the largest carbon stock of terrestrial ecosystems and return to the atmosphere a significant proportion of carbon fixed by photosynthesis. Soils of tropical forests are tremendously important in the carbon cycle because they receive the largest organic matter inputs, they have the largest respiration rates, and they are among the largest carbon reservoirs among world soils. This research assesses the main components of the soil carbon dynamics in primary (PF) and secondary (SF) tropical forests in Colombia. I evaluated the production, stocks, and decomposition rates of aboveground detritus as well as the stocks, growth, mortality, and decomposition of fine roots in these two forest types. Soil carbon outputs were evaluated as total soil, heterotrophic, and root respiration. The stocks of soil organic carbon down to 4 m deep in these two cover types and in degraded pastures (PAS) were also evaluated. ^ Soil inputs of organic carbon from above and belowground sources were lower in SF than in PF. Litterfall in SF was 58% and production of fine root detritus was 60% of that in PF. When production of woody detritus and palm fronds was considered, the difference between these forest types was even larger. However, outputs of mineral carbon through heterotrophic soil respiration were similar; in SF they equaled 97% of those in PF. As a result, soil carbon balance was positive in PF and negative in SF. Despite that soil carbon balances suggest that soils of SF are losing carbon, soil carbon stocks of SF were higher than of degraded pastures, suggesting that they have already started to recover soil carbon stocks lost under degraded pastures. This discrepancy can be partially explained by the effect of drier conditions on heterotrophic soil respiration as a consequence of a moderate El Niño event during the period of soil respiration measurements. The positive carbon balance in soils of PF despite the El Niño event, suggests that soils of PF accumulated about 664 Kg C ha−1 yr−1. Therefore, soil carbon dynamics mainly depended on successional status of vegetation and on climatic conditions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative importance of algal and detrital energy pathways remains a central question in wetlands ecology. We used bulk stable isotope analysis and fatty acid composition to investigate the relative contributions of periphyton (algae) and floc (detritus) in a freshwater wetland with the goal of determining the inputs of these resource pools to lower trophic-level consumers. All animal samples revealed fatty acid markers indicative of both microbial (detrital) and algal origins, though the relative contributions varied among species. Vascular plant markers were in low abundance in most consumers. Detritivory is important for chironomids and amphipods, as demonstrated by the enhanced bacterial fatty acids present in both consumers, while algal resources, in the form of periphyton, likely support ephemeropteran larvae. Invertebrates such as amphipods and grass shrimp appear to be important resources for small omnivorous fish, while Poecilia latipinna appear to strongly use periphyton and Ephemeroptera larvae as food sources. Both P. latipinna and Lepomis spp. assimilated small amounts of vascular plant debris, possibly due to unintentional ingestion of floc while foraging for invertebrates and insect larvae. Physid snails, Haitia spp., were characterized by considerably different fatty acid compositions than other taxa examined, and likely play a unique role in Everglades’ food webs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of large predators on lower trophic levels in oligotrophic, structurally complex, and frequently disturbed aquatic environments is generally thought to be limited. We looked for effects of large predators in two semi-permanent, spikerush-dominated marshes by excluding large fish (>12 mm body depth) and similarly sized herpetofauna from 1 m2 cages (exclosures) for 2 weeks. The exclosures allowed for colonization by intermediate (in size and trophic position) consumers, such as small fish, shrimp, and crayfish. Exclosures were compared to control cages that allowed large fish to move freely in and out. At the end of the experiment, intermediate-consumer densities were higher in exclosures than in controls at both sites. Decapod crustaceans, especially the riverine grass shrimp (Palaemonetes paludosus), accounted for the majority of the response. Effects of large fish on shrimp were generally consistent across sites, but per capita effects were sensitive to estimates of predator density. Densities of intermediate consumers in our exclosures were similar to marsh densities, while the open controls had lower densities. This suggests that these animals avoided our experimental controls because they were risky relative to the surrounding environment, while the exclosures were neither avoided nor preferred. Although illuminating about the dynamics of open-cage experiments, this finding does not influence the main results of the study. Small primary consumers (mostly small snails, amphipods, and midges) living on floating periphyton mats and in flocculent detritus (“floc”) were less abundant in the exclosures, indicative of a trophic cascade. Periphyton mat characteristics (i.e., biomass, chlorophyll a, TP) were not clearly or consistently affected by the exclosure, but TP in the floc was lower in exclosures. The collective cascading effects of large predators were consistent at both sites despite differences in drought frequency, stem density, and productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Everglades, the majority of fish detrital inputs occur during the dry scason, when waterlevel drawdown reduces aquatic habitat. While these mortality events are highly seasonal, the remineralization and recycling of fish detrital nutrients may represent an important stimulus to the ecosystem in the following wet season. The goal of this study was to quantify the rate of detrital fish decomposition during three periods of the year to determine seasonal variations in decomposition patterns in this ecosystem. A multiple regression analysis showed that hydroperiod and water depth both played a role in determining fish decomposition rates within this ecosystem. Decomposition rates ranged from a low of 13% day−1 in December 2000 to a high of 50% day−1 in April 2001, the height of the dry season. Phosphorus analysis showed that Gambusia holbrooki, the dominant small fish species in the Everglades, contains 7.169±1.46 mg P g−1 wet fish weight. Based on the observed decomposition rates and the average biomass added, the estimafed daily flux of phosphorus from the experimental detrital loading ranged from a low of 27.04 mg P day−1 to a high of 108.14 mg P day−1 during the decomposition period. We estimated that these inputs could represent an input of 43 μg P m−2 day−1 to the total temporal Everglades phosphorus budget. Although much of this phosphorus is likely incorporated into the macroinvertebrate pool, detrital inputs peak during the dry season when nutrients are most likely to be incorporated into the soil and occur when decomposition of vegetative material is moisture-limited. These inputs may therefore play an important role in stimulating vegetative production during the early wet season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.