3 resultados para dendritic cell maturation
em Digital Commons at Florida International University
Resumo:
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Resumo:
Alcohol is known to induce inflammation in the presence of the human immunodeficiency virus (HIV). In our previous studies, we revealed that alcohol induces cannabinoid receptors which play a role in the regulation of inflammatory cytokine production in monocyte-derived dendritic cells (MDDC). However, the ability of alcohol to alter MDDC function during HIV infection has not been clearly elucidated yet. To study the potential impact of alcohol on HIV-infected MDDC (confirmed by p24 ELISA), monocytes were isolated from commercially available buffy coats and cultured for 7 days with GM-CSF and IL-4. MDDC were infected with HIV- 1Ba-L and treated with different concentrations of alcohol (0.1% band 0.2%) for 4-7 days. MDDC phenotype, endocytosis, cytokine production, and ability to transmit HIV to T cells were analyzed. Uninfected CD4+ T cells were co-cultured for 7 days with either infected/treated MDDC or the supernatants from infected/treated MDDC. Inflammatory cytokine arrays were performed using supernatants from HIV-infected MDDC treated with alcohol. Results showed that HIV positive MDDC treated with alcohol had higher levels of infection compared to untreated HIV positive controls. CD4+ T cells exposed to HIV-infected MDDC acquired 100-fold higher levels of p24 compared to CD4+ T cells exposed to only supernatants. CD4+ T cells exposed to HIV-infected and alcohol-treated MDDC had higher levels of infection compared to controls. Cytokine array data show dysregulation of cytokine production by alcohol. In addition, MDDC phenotype and endocytic capacity were altered in the alcohol treated MDDC. Our results indicate a crucial role of MDDC in HIV transmission to T cells and provide insights into the inflammatory role alcohol exerts on dendritic cell function in the context of HIV infection. Supported by the National Institute on Alcohol Abuse and Alcoholism award R00AA021264, the National Institute on Drug Abuse award R01DA034547, and the Institute on NeuroImmune Pharmacology at FIU.
Resumo:
HIV-associated neurocognitive disorders (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B), which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C) that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold) down-regulated and 5 genes were significantly (≥3 fold) up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1) was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of apoptosis in astrocytes may contribute to the severe neuropathogenesis in clade B infection.