8 resultados para default probability
em Digital Commons at Florida International University
Resumo:
In this study, I determined the identity, taxonomic placement, and distribution of digenetic trematodes parasitizing the snails Pomacea paludosa and Planorbella duryi at Pa-hay-okee, Everglades National Park. I also characterized temporal and geographic variation in the probability of parasite infection for these snails based on two years of sampling. Although studies indicate that digenean parasites may have important effects both on individual species and the structure of communities, there have been no studies of digenean parasitism on snails within the Everglades ecosystem. For example, the endangered Everglade Snail Kite, a specialist that feeds almost exclusively on Pomacea paludosa, and is known to be a definitive host of digenean parasites, may suffer direct and indirect effects from consumption of parasitized apple snails. Therefore, information on the diversity and abundance of parasites harbored in snail populations in the Everglades should be of considerable interest for management and conservation of wildlife. Juvenile digeneans (cercariae) representing 20 species were isolated from these two snails, representing a quadrupling of the number of species known. Species were characterized based on morphological, morphometric, and sequence data (18S rDNA, COI, and ITS). Species richness of shed cercariae from P. duryi was greater than P. paludosa, with 13 and 7 species respectively. These species represented 14 families. P. paludosa and P. duryi had no digenean species in common. Probability of digenean infection was higher for P. duryi than P. paludosa and adults showed a greater risk of infection than juveniles for both of these snails. Planorbella duryi showed variation in probability of infection between sampling sites and hydrological seasons. The number of unique combinations of multi-species infections was greatest among P. duryi individuals, while the overall percentage of multi-species infections was greatest in P. paludosa. Analyses of six frequently-observed multiple infections from P. duryi suggest the presence of negative interactions, positive interactions, and neutral associations between larval digeneans. These results should contribute to an understanding of the factors controlling the abundance and distribution of key species in the Everglades ecosystem and may in particular help in the management and recovery planning for the Everglade Snail Kite.
Resumo:
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.
Resumo:
Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.
Resumo:
Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.
Resumo:
Purpose: Metabolic syndrome (MetS) is associated with the development of cardiovascular disease (CVD) and type 2 diabetes. Decreases in circulating adiponectin and ghrelin have been associated with MetS. Our primary aim was to evaluate the relationship of MetS with adiponectin and ghrelin for Cuban Americans with and without type 2 diabetes. Methods: Cross-sectional study of 367 adults, self identified as Cuban extraction and randomly recruited from a mailing list of Broward and Miami-Dade counties. Fasted whole blood for adiponectin (ADPN) was collected using K3EDTA tubes and measured by ELISA. Ghrelin was assayed with fasted blood plasma by Enzyme Immunometric Assay. MetS and 10-year risk for coronary heart disease (CHD) were determined using the ATP III criteria. Results: Adiponectin (F=51.8, R2 =0.21 p<0.001) and ghrelin (F=12.77, R 2 =0.06, p<0.001) differed by diabetes status (ANOVA) not age and gender. In stepwise linear regression models triglyceride levels ≥ 150 mg/dL negatively corresponded (coefficient = -0.23) with ghrelin levels for persons without diabetes (F=7.45, R2 =0.053, p=0.007); abdominal obesity and fasting plasma glucose predicted high sensitivity C-reactive protein (hs-CRP) for persons with and without diabetes (F=16.3, R2 = 0.144, p <0.001). Conclusion: Low ghrelin levels were associated with MetS regardless of diabetes status. High adiponectin levels were related to a low probability for those without diabetes only. There was a positive association of hs-CRP with BMI, MetS and number of MetS components.
Resumo:
OBJECTIVE: to examine the relationships among reported medical advice, diabetes education, health insurance and health behavior of individuals with diabetes by race/ethnicity and gender. METHOD: Secondary analysis of data (N = 654) for adults ages > or = 21 years with diabetes acquired through the National Health and Nutrition Examination Survey (NHANES) for the years 2007-2008 comparing Black, non-Hispanics (BNH) and Mexican-Americans (MA) with White, non-Hispanics (WNH). The NHANES survey design is a stratified, multistage probability sample of the civilian noninstitutionalized U.S. population. Sample weights were applied in accordance with NHANES specifications using the complex sample module of IBM SPSS version 18. RESULTS: The findings revealed statistical significant differences in reported medical advice given. BNH [OR = 1.83 (1.16, 2.88), p = 0.013] were more likely than WNH to report being told to reduce fat or calories. Similarly, BNH [OR = 2.84 (1.45, 5.59), p = 0.005] were more likely than WNH to report that they were told to increase their physical activity. Mexican-Americans were less likely to self-monitor their blood glucose than WNH [OR = 2.70 (1.66, 4.38), p < 0.001]. There were differences by race/ethnicity for reporting receiving recent diabetes education. Black, non-Hispanics were twice as likely to report receiving diabetes education than WNH [OR = 2.29 (1.36, 3.85), p = 0.004]. Having recent diabetes education increased the likelihood of performing several diabetes self-management behaviors independent of race. CONCLUSIONS: There were significant differences in reported medical advice received for diabetes care by race/ethnicity. The results suggest ethnic variations in patient-provider communication and may be a consequence of their health beliefs, patient-provider communication as well as length of visit and access to healthcare. These findings clearly demonstrate the need for government sponsored programs, with a patient-centered approach, augmenting usual medical care for diabetes. Moreover, the results suggest that public policy is needed to require the provision of diabetes education at least every two years by public health insurance programs and recommend this provision for all private insurance companies