7 resultados para cutting stock problem with setups
em Digital Commons at Florida International University
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Sales tax enforcement: An empirical analysis of compliance enforcement methodologies and pathologies
Resumo:
Most research on tax evasion has focused on the income tax. Sales tax evasion has been largely ignored and dismissed as immaterial. This paper explored the differences between income tax and sales tax evasion and demonstrated that sales tax enforcement is deserving of and requires the use of different tools to achieve compliance. Specifically, the major enforcement problem with sales tax is not evasion: it is theft perpetrated by companies that act as collection agents for the state. Companies engage in a principal-agent relationship with the state and many retain funds collected as an agent of the state for private use. As such, the act of sales tax theft bears more resemblance to embezzlement than to income tax evasion. It has long been assumed that the sales tax is nearly evasion free, and state revenue departments report voluntary compliance in a manner that perpetuates this myth. Current sales tax compliance enforcement methodologies are similar in form to income tax compliance enforcement methodologies and are based largely on trust. The primary focus is on delinquent filers with a very small percentage of businesses subject to audit. As a result, there is a very large group of noncompliant businesses who file on time and fly below the radar while stealing millions of taxpayer dollars. ^ The author utilized a variety of statistical methods with actual field data derived from operations of the Southern Region Criminal Investigations Unit of the Florida Department of Revenue to evaluate current and proposed sales tax compliance enforcement methodologies in a quasi-experimental, time series research design and to set forth a typology of sales tax evaders. This study showed that current estimates of voluntary compliance in sales tax systems are seriously and significantly overstated and that current enforcement methodologies are inadequate to identify the majority of violators and enforce compliance. Sales tax evasion is modeled using the theory of planned behavior and Cressey’s fraud triangle and it is demonstrated that proactive enforcement activities, characterized by substantial contact with non-delinquent taxpayers, results in superior ability to identify noncompliance and provides a structure through which noncompliant businesses can be rehabilitated.^
Resumo:
A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.