2 resultados para crosslinking

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fas system, comprising the Fas receptor (Fas/Apo-1/CD95) and its ligand, Fas ligand (FasL), is a central mediator of programmed cell death in various physiological and pathological processes. FasL exists as transmembrane and soluble forms and induces apoptosis on crosslinking with Fas receptor. Recent evidence indicated that tumor cells exploit this system for their immunologic escape that includes the loss of Fas and the gain of FasL expression. In the present study, nine mouse tumor cell lines of diverse origin were examined immunocytochemically for the expression of Fas and FasL. Nine of nine cell lines expressed FasL, and five of nine cell lines expressed Fas. FasL expression in these tumor cell lines was demonstrated to be functional by its induction of apoptosis in Fas-sensitive target cells in coculture experiments. These results suggest that FasL may be a prevalent mediator of immune privilege in mouse malignancies, and support the recently proposed "counterattack model" for local elimination of tumor-reactive immune cells by tumor cell-derived FasL.^ Culture supernatant of four cell lines expressing FasL showed cytotoxic effect on Fas-sensitive target cells, indicating the possibility of secreted FasL in the medium. The Fas-expressing cell lines were sensitized to anti-Fas antibody cytotoxicity following treatment with IL-2 and IFN-$\gamma$, suggesting cytokine stimulation as an effective target for future immunotherapeutic strategies. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current artificial heart valves are classified as mechanical and bioprosthetic. An appealing pathway that promises to overcome the shortcomings of commercially available heart valves is offered by the interdisciplinary approach of cardiovascular tissue engineering. However, the mechanical properties of the Tissue Engineering Heart Valves (TEHV) are limited and generally fail in the long-term use. To meet this performance challenge novel biodegradable triblock copolymer poly(ethylene oxide)-polypropylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO or F108) crosslinked to Silk Fibroin (F108-SilkC) to be used as tri-leaflet heart valve material was investigated. ^ Synthesis of ten polymers with varying concentration and thickness (55 µm, 75 µm and 100 µm) was achieved via a covalent crosslinking scheme using bifunctional polyethylene glycol diglycidyl ether (PEGDE). Static and fatigue testing were used to assess mechanical properties of films, and hydrodynamic testing was performed to determine performance under a simulated left ventricular flow regime. The crosslinked copolymer (F108-Silk C) showed greater flexibility and resilience, but inferior ultimate tensile strength, by increasing concentration of PEGDE. Concentration molar ratio of 80:1 (F108: Silk) and thickness of 75 µm showed longer fatigue life for both tension-tension and bending fatigue tests. Four valves out of twelve designed satisfactorily complied with minimum performance requirement ISO 5840, 2005. ^ In conclusion, it was demonstrated that the applicability of a degradable polymer in conjugation with silk fibroin for tissue engineering cardiovascular use, specifically for aortic valve leaflet design, met the performance demands. Thinner thicknesses (t<75 µm) in conjunction with stiffness lower than 320 MPa (80:1, F108: Silk) are essential for the correct functionality of proposed heart valve biomaterial F108-SilkC. Fatigue tests were demonstrated to be a useful tool to characterize biomaterials that undergo cyclic loading. ^