7 resultados para crayfish burrows

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Faster growing, larger and/or more aggressive crayfish species are predicted to dominate permanent waterbodies. We tested this prediction using a 9 year dataset for two species of crayfish (Procambarus alleni and Procambarus fallax) co-existing in a sub-tropical flowing slough in southern Florida. Using a series of laboratory and mesocosm experiments we also compared life history traits and performance of the respective species to test mechanisms that could explain dominance shifts in the local crayfish assemblages. 2. Over the 9-year period, P. alleni densities were the greatest in shallower, shorterhydroperiod areas bordering the slough, while P. fallax densities were higher in deeper, longer-hydroperiod central areas. These areas were separated by 0.8–2 km of continuous wetland with no apparent barriers to movement between them. 3. Density of P. fallax was not strongly affected by any measures of hydrological variation, while P. alleni density increased with more severe drought conditions. Following the strongest droughts, P. alleni colonized areas in the centre of the slough where they had been absent or scarce in wetter years. 4. We conducted experiments to compare growth rates, drought tolerance, and competitive dominance of these species. P. alleni survived drought conditions better, had higher growth rates, and was the dominant competitor for space and food. While drought probably limits P. fallax in the drier slough habitats, neither drought sensitivity nor interspecific competition with P. fallax can explain decreases of P. alleni with wetter conditions. 5. Our results indicate that a competition-colonization tradeoff cannot explain the crayfish compositional dynamics in this wetland because P. alleni is both the best competitor and the best at surviving in and colonizing areas with the strongest droughts. Future attention should focus on the potential for selective effects of predators that co-vary with hydrology. 6. The traits (large size, fast growth, competitive dominance) exhibited by P. alleni, which is absent in long-hydroperiod wetlands, are those exhibited by dominant crayfish in permanent lakes and streams containing fish. Although these traits make crayfish less vulnerable to fish in some lakes and streams, life-history models of community structure across permanence gradients suggest the opposite traits should be favoured for co-existence with fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origins of population dynamics depend on interplay between abiotic and biotic factors; the relative importance of each changing across space and time. Predation is a central feature of ecological communities that removes individuals (consumption) and alters prey traits (non-consumptive). Resource quality mitigates non-consumptive predator effects by stimulating growth and reproduction. Disturbance resets predator-prey interactions by removing both. I integrate experiments, time-series analysis, and performance trials to examine the relative importance of these on the population dynamics of a snail species by studying a variety of their traits. A review of ninety-three published articles revealed that snail abundance was much less in the Everglades and similar ecosystems compared to all other freshwater ecosystems considered. Separating consumptive from non-consumptive (cues) predator effects at different phosphorous levels with an experiment determined that phosphorous stimulated, but predator cues inhibited snail growth (34% vs. 23%), activity (38% vs. 53%), and reproductive effort (99% vs. 90%) compared to controls. Cues induced taller shells and smaller openings and moved to refugia where they reduced periphyton by 8%. Consumptive predator effects were minor in comparison. In a reciprocal transplant cage experiment along a predator cue and phosphorous gradient created by a canal, snails grew 10% faster and produced 37% more eggs far from the canal (fewer cues) when fed phosphorous-enriched periphyton from near the canal. Time-series analysis at four sites and predator performance trials reveal that phosphorous-enriched regions support larger snail populations, seasonal drying removes snails at all sites, crayfish negatively affect populations in enriched regions, and molluscivorous fish consume snails in the wet season. Combining these studies reveals interplay between resources, predators, and seasonality that limit snail populations in the Everglades and lead to their low abundance compared to other freshwater ecosystems. Resource quality is emerging as the critical factor because improving resources profoundly improved growth and reproduction; seasonal drying and predation become important at times and places. This work contributes to the general understanding in ecology of the relative importance of different factors that structure populations and provides evidence that bolsters monitoring efforts to assess the Comprehensive Everglades Restoration Plan that show phosphorous enrichment is a major driver of ecosystem change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of large predators on lower trophic levels in oligotrophic, structurally complex, and frequently disturbed aquatic environments is generally thought to be limited. We looked for effects of large predators in two semi-permanent, spikerush-dominated marshes by excluding large fish (>12 mm body depth) and similarly sized herpetofauna from 1 m2 cages (exclosures) for 2 weeks. The exclosures allowed for colonization by intermediate (in size and trophic position) consumers, such as small fish, shrimp, and crayfish. Exclosures were compared to control cages that allowed large fish to move freely in and out. At the end of the experiment, intermediate-consumer densities were higher in exclosures than in controls at both sites. Decapod crustaceans, especially the riverine grass shrimp (Palaemonetes paludosus), accounted for the majority of the response. Effects of large fish on shrimp were generally consistent across sites, but per capita effects were sensitive to estimates of predator density. Densities of intermediate consumers in our exclosures were similar to marsh densities, while the open controls had lower densities. This suggests that these animals avoided our experimental controls because they were risky relative to the surrounding environment, while the exclosures were neither avoided nor preferred. Although illuminating about the dynamics of open-cage experiments, this finding does not influence the main results of the study. Small primary consumers (mostly small snails, amphipods, and midges) living on floating periphyton mats and in flocculent detritus (“floc”) were less abundant in the exclosures, indicative of a trophic cascade. Periphyton mat characteristics (i.e., biomass, chlorophyll a, TP) were not clearly or consistently affected by the exclosure, but TP in the floc was lower in exclosures. The collective cascading effects of large predators were consistent at both sites despite differences in drought frequency, stem density, and productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major goal of the Comprehensive Everglades Restoration Plan (CERP) is to recover historical (pre-drainage) wading bird rookeries and reverse marked decreases in wading bird nesting success in Everglades National Park. To assess efforts to restore wading birds, a trophic hypothesis was developed that proposes seasonal concentrations of small-fish and crustaceans (i.e., wading bird prey) were a key factor to historical wading bird success. Drainage of the Everglades has diminished these seasonal concentrations, leading to a decline in wading bird nesting and displacing them from their historical nesting locations. The trophic hypothesis predicts that restoring historical hydrological patterns to pre-drainage conditions will recover the timing and location of seasonally concentrated prey, ultimately restoring wading bird nesting and foraging to the southern Everglades. We identified a set of indicators using small-fish and crustaceans that can be predicted from hydrological targets and used to assess management success in regaining suitable wading bird foraging habitat. Small-fish and crustaceans are key components of the Everglades food web and are sensitive to hydrological management, track hydrological history with little time lag, and can be studied at the landscape scale. The seasonal hydrological variation of the Everglades that creates prey concentrations presents a challenge to interpreting monitoring data. To account for the variable hydrology of the Everglades in our assessment, we developed dynamic hydrological targets that respond to changes in prevailing regional rainfall. We also derived statistical relationships between density and hydrological drivers for species representing four different life-history responses to drought. Finally, we use these statistical relationships and hydrological targets to set restoration targets for prey density. We also describe a report-card methodology to communicate the results of model-based assessments for communication to a broad audience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2.  We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3.  The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4.  Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predation, predation risk, and resource quality affect suites of prey traits that collectively impact individual fitness, population dynamics, and community structure. However, studies of multi-trophic level effects generally focus on a single prey trait, failing to capture trade-offs among suites of covarying traits that govern population responses and emergent community patterns. We used structural equation models (SEM) to summarize the non-lethal and lethal effects of crayfish, Procambarus fallax, and phosphorus (P) addition, which affected prey food quality (periphyton), on the interactive effects of behavioral, morphological, developmental, and reproductive traits of snails, Planorbella duryi. Univariate and multivariate analyses suggested trade-offs between production (growth, reproduction) and defense (foraging behavior, shell shape) traits of snails in response to non-lethal crayfish and P addition, but few lethal effects. SEM revealed that non-lethal crayfish effects indirectly limited per capita offspring standing stock by increasing refuge use, slowing individual growth, and inducing snails to produce thicker, compressed shells. The negative effects of non-lethal crayfish on snails were strongest with P addition; snails increased allocation to shell defense rather than growth or reproduction. However, compared to ambient conditions, P addition with non-lethal crayfish still yielded greater per capita offspring standing stock by speeding individual snail growth enabling them to produce more offspring that also grew faster. Increased refuge use in response to non-lethal crayfish led to a non-lethal trophic cascade that altered the spatial distribution of periphyton. Independent of crayfish effects, snails stimulated periphyton growth through nutrient regeneration. These findings illustrate the importance of studying suites of traits that reveal costs associated with inducing different traits and how expressing those traits impacts population and community level processes.