5 resultados para covariance model
em Digital Commons at Florida International University
Resumo:
This dissertation analyzes whether and how changes in federal tax policy affect local tax policies, specifically, the elimination of the federal deductibility of state and local taxes for individual taxpayers by the Tax Reform Act of 1986 (TRA86) in 59 California cities. Two methods are used in the study: a survey of local revenue officials and a time event time-series/cross sectional sales tax reliance study.^ The reliance study uses a covariance model to pool cross-section and time-series observations. The results of the reliance study indicate a statistically significant overall decline in sales tax reliance after 1986. The results of the survey indicate that local policy makers generally do not believe that federal deductibility is an important factor when considering raising local sales taxes. Further analysis shows that local revenue officials claiming federal deductibility is not an important factor are associated mostly with cities that registered no significant decline in sales tax reliance after 1986. Similarly, local revenue officials claiming federal deductibility is an important factor when considering local tax policy are associated mostly with cities that suffered a significant decline in sales tax reliance after 1986.^ Of that group, further analysis shows that the declines in sales tax reliance are associated mostly with cities located in the southwestern part of the state. When compared to other cities in the state, an analysis of variance reveals that there are a series of statistically significant factors associated with southwestern cities which may contribute to the decline in sales tax reliance following the enactment of the Tax Reform Act of 1986. ^
Resumo:
This study was an evaluation of a Field Project Model Curriculum and its impact on achievement, attitude toward science, attitude toward the environment, self-concept, and academic self-concept with at-risk eleventh and twelfth grade students. One hundred eight students were pretested and posttested on the Piers-Harris Children's Self-Concept Scale, PHCSC (1985); the Self-Concept as a Learner Scale, SCAL (1978); the Marine Science Test, MST (1987); the Science Attitude Inventory, SAI (1970); and the Environmental Attitude Scale, EAS (1972). Using a stratified random design, three groups of students were randomly assigned according to sex and stanine level, to three treatment groups. Group one received the field project method, group two received the field study method, and group three received the field trip method. All three groups followed the marine biology course content as specified by Florida Student Performance Objectives and Frameworks. The intervention occurred for ten months with each group participating in outside-of-classroom activities on a trimonthly basis. Analysis of covariance procedures were used to determine treatment effects. F-ratios, p-levels and t-tests at p $<$.0062 (.05/8) indicated that a significant difference existed among the three treatment groups. Findings indicated that groups one and two were significantly different from group three with group one displaying significantly higher results than group two. There were no significant differences between males and females in performance on the five dependent variables. The tenets underlying environmental education are congruent with the recommendations toward the reform of science education. These include a value analysis approach, inquiry methods, and critical thinking strategies that are applied to environmental issues. ^
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.
Resumo:
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.