3 resultados para copper soil contamination

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that the environmental conditions of the home are important predictors of health, especially in low-income communities. Understanding the relationship between the environment and health is crucial in the management of certain diseases. One health outcome related to the home environment among urban, minority, and low-income children is childhood lead poisoning. The most common sources of lead exposure for children are lead paint in older, dilapidated housing and contaminated dust and soil produced by accumulated residue of leaded gasoline. Blood lead levels (BLL) as low as 10 μg/dL in children are associated with impaired cognitive function, behavior difficulties, and reduced intelligence. Recently, it is suggested that the standard for intervention be lowered to BLL of 5 μg /dl. The objectives of our report were to assess the prevalence of lead poisoning among children under six years of age and to quantify and test the correlations between BLL in children and lead exposure levels in their environment. This cross-sectional analysis was restricted to 75 children under six years of age who lived in 6 zip code areas of inner city Miami. These locations exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Using the 5 μg/dL as the cutoff point, the prevalence of lead poisoning among the study sample was 13.33%. The study revealed that lead levels in floor dust and window sill samples were positively and significantly correlated with BLL among children (p < 0.05). However, the correlations between BLL and the soil, air, and water samples were not significant. Based on this pilot study, a more comprehensive environmental study in surrounding inner city areas is warranted. Parental education on proper housecleaning techniques may also benefit those living in the high lead-exposed communities of inner city Miami.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the study was to evaluate the magnitude of environmental lead contamination in the downtown area of Miami. Lead inspections took place at 121 homes in Little Haiti and Liberty City and involved the collection ofrepresentative samples from floors, window wells, tap water, soil and air. Community health workers (CHWs) trained in interview and safety techniques went from door to door to enlist participation. On-site investigations were tailored to areas most utilized by children underthe age of6 years. The presence of lead-containing paint was also investigated in situ via X-ray fluorescence (XRF) analysis. Results: Of the sampling areas, the window wells area had the most abundant occurrence of lead. On analysis, 24% of sites returned window well samples with lead levels above Department of Housing and Urban Development (HUD) guidelines. Of the soil samples, the playgrounds around the house had the highest concentration of lead. Soil sampling demonstrated that 27.5% of sites returned samples with lead levels (400 to 1600 ppm) inexcess of HUD/Environmental Protection Agency (EPA) standards. Positive XRF readings in one or more components were returned by 18% of sites. Conclusions: More than half of the houses in these two neighborhoods exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Limitations of this study did not allow the assessment of how many children in this area are affected. A more comprehensive study including other areas of Miami-Dade County with older housing stock is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.