6 resultados para containers
em Digital Commons at Florida International University
Resumo:
The Meals on Wheels (MOW) program is designed to help combat hunger in persons needing assistance. MOW has a duty not only to provide food but also to ensure that it reaches eligible clients safely. Given the population that MOW serves, transporting food safely takes on increased importance. This experiment focused on the major food safety issue of maintaining temperature integrity through the use of transport containers. For containers that did not contain electric heating elements, several factors influenced how fast the food temperature fell. Those factors included the U-value and size of the container as well as how many meals were in the container. As predicted, the smaller the U-value, the longer it took the temperature to fall. Larger containers did better at maintaining food temperatures, provided they were fully loaded. In general, fully loaded small and medium containers were better at maintaining food temperatures than larger containers loaded with the same number of meals.
Resumo:
This work evaluated the capabilities of inductively coupled plasma mass spectrometry (ICP-MS) for elemental analysis of trace evidence. A method was developed and validated for the analysis of glass by ICP-MS. A database of ∼700 glass samples was analyzed for elemental composition by external calibration with internal standardization (EC) ICP-MS and refractive index (RI). Additional methods were developed during the course of this work using two well-known techniques, isotope dilution (ID) and laser ablation (LA). These methods were then applied to analyze subsets of this database. ICP-MS data from 161 containers, 45 headlamps, and 458 float glasses (among them at least 143 vehicle windows) are presented and summarized. Data from the analysis of ∼190 glass samples collected from a single glass manufacturing facility over a period of 53 months at different intervals, including 97 samples collected in a 24 hour period are presented. Data from the analysis of 125 glass samples representing 36 manufacturing plants in the U.S. are also presented. ^ The three methods used, ICP-MS, ID-ICP-MS and LA-ICP-MS, were shown to be excellent methods for distinguishing between different glass samples. The database provided information about the variability of refractive index and elemental composition in glasses from diverse population types. Using the proposed methods, the database supports the hypothesis that different glass samples have different elemental profiles and a comparison between fragments from the same source results in indistinguishable profiles. ^
Resumo:
The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5∼1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. ^ This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range. ^
Resumo:
The 9/11 Act mandates the inspection of 100% of cargo shipments entering the U.S. by 2012 and 100% inspection of air cargo by March 2010. So far, only 5% of inbound shipping containers are inspected thoroughly while air cargo inspections have fared better at 50%. Government officials have admitted that these milestones cannot be met since the appropriate technology does not exist. This research presents a novel planar solid phase microextraction (PSPME) device with enhanced surface area and capacity for collection of the volatile chemical signatures in air that are emitted from illicit compounds for direct introduction into ion mobility spectrometers (IMS) for detection. These IMS detectors are widely used to detect particles of illicit substances and do not have to be adapted specifically to this technology. For static extractions, PDMS and sol-gel PDMS PSPME devices provide significant increases in sensitivity over conventional fiber SPME. Results show a 50–400 times increase in mass detected of piperonal and a 2–4 times increase for TNT. In a blind study of 6 cases suspected to contain varying amounts of MDMA, PSPME-IMS correctly detected 5 positive cases with no false positives or negatives. One of these cases had minimal amounts of MDMA resulting in a false negative response for fiber SPME-IMS. A La (dihed) phase chemistry has shown an increase in the extraction efficiency of TNT and 2,4-DNT and enhanced retention over time. An alternative PSPME device was also developed for the rapid (seconds) dynamic sampling and preconcentration of large volumes of air for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties under ambient conditions resulting in ppt detection limits when 3.5 L of air are sampled over the course of 10 seconds. Dynamic PSPME was used to sample the headspace over the following: MDMA tablets (12–40 ng detected of piperonal), high explosives (Pentolite) (0.6 ng detected of TNT), and several smokeless powders (26–35 ng of 2,4-DNT and 11–74 ng DPA detected). PSPME-IMS technology is flexible to end-user needs, is low-cost, rapid, sensitive, easy to use, easy to implement, and effective. ^
Resumo:
We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase.
Resumo:
The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.