4 resultados para compression refrigeration system
em Digital Commons at Florida International University
Resumo:
3D geographic information system (GIS) is data and computation intensive in nature. Internet users are usually equipped with low-end personal computers and network connections of limited bandwidth. Data reduction and performance optimization techniques are of critical importance in quality of service (QoS) management for online 3D GIS. In this research, QoS management issues regarding distributed 3D GIS presentation were studied to develop 3D TerraFly, an interactive 3D GIS that supports high quality online terrain visualization and navigation. ^ To tackle the QoS management challenges, multi-resolution rendering model, adaptive level of detail (LOD) control and mesh simplification algorithms were proposed to effectively reduce the terrain model complexity. The rendering model is adaptively decomposed into sub-regions of up-to-three detail levels according to viewing distance and other dynamic quality measurements. The mesh simplification algorithm was designed as a hybrid algorithm that combines edge straightening and quad-tree compression to reduce the mesh complexity by removing geometrically redundant vertices. The main advantage of this mesh simplification algorithm is that grid mesh can be directly processed in parallel without triangulation overhead. Algorithms facilitating remote accessing and distributed processing of volumetric GIS data, such as data replication, directory service, request scheduling, predictive data retrieving and caching were also proposed. ^ A prototype of the proposed 3D TerraFly implemented in this research demonstrates the effectiveness of our proposed QoS management framework in handling interactive online 3D GIS. The system implementation details and future directions of this research are also addressed in this thesis. ^
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
Rates of survival of victims of sudden cardiac arrest (SCA) using cardio pulmonary resuscitation (CPR) have shown little improvement over the past three decades. Since registered nurses (RNs) comprise the largest group of healthcare providers in U.S. hospitals, it is essential that they are competent in performing the four primary measures (compression, ventilation, medication administration, and defibrillation) of CPR in order to improve survival rates of SCA patients. The purpose of this experimental study was to test a color-coded SMOCK system on: 1) time to implement emergency patient care measures 2) technical skills performance 3) number of medical errors, and 4) team performance during simulated CPR exercises. The study sample was 260 RNs (M 40 years, SD=11.6) with work experience as an RN (M 7.25 years, SD=9.42).Nurses were allocated to a control or intervention arm consisting of 20 groups of 5-8 RNs per arm for a total of 130 RNs in each arm. Nurses in each study arm were given clinical scenarios requiring emergency CPR. Nurses in the intervention group wore different color labeled aprons (smocks) indicating their role assignment (medications, ventilation, compression, defibrillation, etc) on the code team during CPR. Findings indicated that the intervention using color-labeled smocks for pre-assigned roles had a significant effect on the time nurses started compressions (t=3.03, p=0.005), ventilations (t=2.86, p=0.004) and defibrillations (t=2.00, p=.05) when compared to the controls using the standard of care. In performing technical skills, nurses in the intervention groups performed compressions and ventilations significantly better than those in the control groups. The control groups made significantly (t=-2.61, p=0.013) more total errors (7.55 SD 1.54) than the intervention group (5.60, SD 1.90). There were no significant differences in team performance measures between the groups. Study findings indicate use of colored labeled smocks during CPR emergencies resulted in: shorter times to start emergency CPR; reduced errors; more technical skills completed successfully; and no differences in team performance.
Resumo:
Rates of survival of victims of sudden cardiac arrest (SCA) using cardio pulmonary resuscitation (CPR) have shown little improvement over the past three decades. Since registered nurses (RNs) comprise the largest group of healthcare providers in U.S. hospitals, it is essential that they are competent in performing the four primary measures (compression, ventilation, medication administration, and defibrillation) of CPR in order to improve survival rates of SCA patients. The purpose of this experimental study was to test a color-coded SMOCK system on:1) time to implement emergency patient care measures 2) technical skills performance 3) number of medical errors, and 4) team performance during simulated CPR exercises. The study sample was 260 RNs (M 40 years, SD=11.6) with work experience as an RN (M 7.25 years, SD=9.42).Nurses were allocated to a control or intervention arm consisting of 20 groups of 5-8 RNs per arm for a total of 130 RNs in each arm. Nurses in each study arm were given clinical scenarios requiring emergency CPR. Nurses in the intervention group wore different color labeled aprons (smocks) indicating their role assignment (medications, ventilation, compression, defibrillation, etc) on the code team during CPR. Findings indicated that the intervention using color-labeled smocks for pre-assigned roles had a significant effect on the time nurses started compressions (t=3.03, p=0.005), ventilations (t=2.86, p=0.004) and defibrillations (t=2.00, p=.05) when compared to the controls using the standard of care. In performing technical skills, nurses in the intervention groups performed compressions and ventilations significantly better than those in the control groups. The control groups made significantly (t=-2.61, p=0.013) more total errors (7.55 SD 1.54) than the intervention group (5.60, SD 1.90). There were no significant differences in team performance measures between the groups. Study findings indicate use of colored labeled smocks during CPR emergencies resulted in: shorter times to start emergency CPR; reduced errors; more technical skills completed successfully; and no differences in team performance.