7 resultados para compositional heterogeneity

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation–emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r2=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5×104 (T1) and ∼7.6×103 (T2) and with varying relative abundance among samples. The T1-peak intensity correlated strongly with [UDON] (r2=0.516, p<0.001), while T2-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is one of the largest carbon reservoirs on this planet and is present in aquatic environments as a highly complex mixture of organic compounds. The Florida coastal Everglades (FCE) is one of the largest wetlands in the world. DOM in this system is an important biogeochemical component as most of the nitrogen (N) and phosphorous (P) are in organic forms. Achieving a better understanding of DOM dynamics in large coastal wetlands is critical, and a particularly important issue in the context of Everglades restoration. In this work, the environmental dynamics of surface water DOM on spatial and temporal scales was investigated. In addition, photo- and bio-reactivity of this DOM was determined, surface-to-groundwater exchange of DOM was investigated, and the size distribution of freshwater DOM in Everglades was assessed. The data show that DOM dynamics in this ecosystem are controlled by both hydrological and ecological drivers and are clearly different on spatial scales and variable seasonally. The DOM reactivity data, modeled with a multi-pool first order degradation kinetics model, found that fluorescent DOM in FCE is generally photo-reactive and bio-refractory. Yet the sequential degradation proved a “priming effect” of sunlight on the bacterial uptake and reworking of this subtropical wetland DOM. Interestingly, specific PARAFAC components were found to have different photo- and bio-degradation rates, suggesting a highly heterogeneous nature of fluorophores associated with the DOM. Surface-to-groundwater exchange of DOM was observed in different regions of the system, and compositional differences were associated with source and photo-reactivity. Lastly, the high degree of heterogeneity of DOM associated fluorophores suggested based on the degradation studies was confirmed through the EEM-PARAFAC analysis of DOM along a molecular size continuum, suggesting that the fluorescence characteristics of DOM are highly controlled by different size fractions and as such can exhibit significant differences in reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis would not have been possible without the aid of my family, friends, laboratory members, and professors. First and foremost, I would like to thank Dr. Kalai Mathee for allowing me to enter her lab in August 2007 and enabling to embark on this journey. This experience has transformed me into more mature scientist, teaching me how to ask the right questions and the process needed to solve them. I would also like to acknowledge Dr. Lisa Schneper. She has helped me throughout the whole process, by graciously giving me input at every step of the way. I would like to express gratitude to Dr. Jennifer Richards for all her input in writing the thesis. She has been a great teacher and being in her class has been a pleasure. Moreover, I would like to thank all the committee members for their constructive criticism throughout the process. When I entered the lab in August, there was one person who literally was by my side, Melissa Doud. Without your input and guidance I would not have even been able to do these experiments. I would also like to thank you and Dr. Light for allowing me to meet some cystic fibrosis patients. It has allowed me to put a face on the disease, and help the patients' fight. For a period before I had entered the lab, Ms. Doud had an apprentice, who started the fungal aspect of the project, Caroline Veronese. Her initial work has enabled me to prefect the protocols and complete the ITS 1 region.One very unique aspect about Dr. Mathee's lab is the camaraderie. I would like to thank all the lab members for the good times in and out of the lab. These individuals have been able to make smile and laugh in parties and lab meetings. I would like to individually thank Balachandar Dananjeyan, Deepak Balasubramanian, and V arinderpal Singh Pannu for all the PCR help and Natalie Maricic for the laughs and being a great classmate. Last, but not least, I would like to acknowledge my family and friends for their support and keeping me sane: Cecilia, my mother, Mohammad, my father, Amir, my older brother, Billal, my younger brother, Ouday Akkari and Stephanie De Bedout, my best friends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined periphyton along transects in five Everglades marshes and related compositional and functional aspects to phosphorus(P ) gradients caused by enriched inflows. Results were compared to those of a P-addition experiment in a pristine Everglades marsh. While the water total P (TP) concentration was not related to P load in the marshes or experiment the concentration of TP in periphyton was strongly correlated with the distance from the P source. Increased P concentration in periphyton was associated with a loss of biomass,p articularly of the calcifying mat-forming matrix, regardless of the growth form of the periphyton (epiphytic, floating,or epilithic). Diatom species composition was also strongly related to P availability, but the TP optima of many species varied among marshes. Enriched periphyton communities were found 14 km downstream of P inputs to one marsh that has been receiving enhanced P loads for decades, where other studies using different biotic indicators show negligible change in the same marsh. Although recovery trajectories are unknown, periphyton indicators should serve as excellent metrics for the progression or amelioration of P-related effects in the Everglades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of residential landscapes occurs within a complex socio-ecological system linking household decision-making with ecological properties, multi-scalar human drivers, and the legacy effects of past management. Conventional wisdom suggests that resource-intensive turf grass yards are the most common landscaping outcome, resulting in a presumed homogeneous set of residential landscaping practices throughout North America. We examine this homogenization thesis through an interview-based, cross-site study of residential landscape management in Boston, Phoenix, and Miami. Counter to the homogeneity thesis, we find that yard management practices often exhibit heterogeneity, for example, in groundcover choice or use of chemical inputs. The degree of heterogeneity in management practices varies according to the scale of analysis, and is the outcome of a range of constraints and opportunities to which households respond differently depending on their existing yard and landscaping preferences. This study highlights the importance of multi-scalar and cross-site analyses of decision-making in socio-ecological systems, and presents opportunities for longitudinal and cross-site research to examine the extent to which homogeneity is actually present in the management of residential landscapes over time and in diverse places.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.