20 resultados para complex text layout
em Digital Commons at Florida International University
Resumo:
The major barrier to practical optimization of pavement preservation programming has always been that for formulations where the identity of individual projects is preserved, the solution space grows exponentially with the problem size to an extent where it can become unmanageable by the traditional analytical optimization techniques within reasonable limit. This has been attributed to the problem of combinatorial explosion that is, exponential growth of the number of combinations. The relatively large number of constraints often presents in a real-life pavement preservation programming problems and the trade-off considerations required between preventive maintenance, rehabilitation and reconstruction, present yet another factor that contributes to the solution complexity. In this research study, a new integrated multi-year optimization procedure was developed to solve network level pavement preservation programming problems, through cost-effectiveness based evolutionary programming analysis, using the Shuffled Complex Evolution (SCE) algorithm.^ A case study problem was analyzed to illustrate the robustness and consistency of the SCE technique in solving network level pavement preservation problems. The output from this program is a list of maintenance and rehabilitation treatment (M&R) strategies for each identified segment of the network in each programming year, and the impact on the overall performance of the network, in terms of the performance levels of the recommended optimal M&R strategy. ^ The results show that the SCE is very efficient and consistent in the simultaneous consideration of the trade-off between various pavement preservation strategies, while preserving the identity of the individual network segments. The flexibility of the technique is also demonstrated, in the sense that, by suitably coding the problem parameters, it can be used to solve several forms of pavement management programming problems. It is recommended that for large networks, some sort of decomposition technique should be applied to aggregate sections, which exhibit similar performance characteristics into links, such that whatever M&R alternative is recommended for a link can be applied to all the sections connected to it. In this way the problem size, and hence the solution time, can be greatly reduced to a more manageable solution space. ^ The study concludes that the robust search characteristics of SCE are well suited for solving the combinatorial problems in long-term network level pavement M&R programming and provides a rich area for future research. ^
Resumo:
Disk drives are the bottleneck in the processing of large amounts of data used in almost all common applications. File systems attempt to reduce this by storing data sequentially on the disk drives, thereby reducing the access latencies. Although this strategy is useful when data is retrieved sequentially, the access patterns in real world workloads is not necessarily sequential and this mismatch results in storage I/O performance degradation. This thesis demonstrates that one way to improve the storage performance is to reorganize data on disk drives in the same way in which it is mostly accessed. We identify two classes of accesses: static, where access patterns do not change over the lifetime of the data and dynamic, where access patterns frequently change over short durations of time, and propose, implement and evaluate layout strategies for each of these. Our strategies are implemented in a way that they can be seamlessly integrated or removed from the system as desired. We evaluate our layout strategies for static policies using tree-structured XML data where accesses to the storage device are mostly of two kinds—parent-to-child or child-to-sibling. Our results show that for a specific class of deep-focused queries, the existing file system layout policy performs better by 5–54X. For the non-deep-focused queries, our native layout mechanism shows an improvement of 3–127X. To improve performance of the dynamic access patterns, we implement a self-optimizing storage system that performs rearranges popular block accesses on a dedicated partition based on the observed workload characteristics. Our evaluation shows an improvement of over 80% in the disk busy times over a range of workloads. These results show that applying the knowledge of data access patterns for allocation decisions can substantially improve the I/O performance.
Resumo:
The field of chemical kinetics is an exciting and active field. The prevailing theories make a number of simplifying assumptions that do not always hold in actual cases. Another current problem concerns a development of efficient numerical algorithms for solving the master equations that arise in the description of complex reactions. The objective of the present work is to furnish a completely general and exact theory of reaction rates, in a form reminiscent of transition state theory, valid for all fluid phases and also to develop a computer program that can solve complex reactions by finding the concentrations of all participating substances as a function of time. To do so, the full quantum scattering theory is used for deriving the exact rate law, and then the resulting cumulative reaction probability is put into several equivalent forms that take into account all relativistic effects if applicable, including one that is strongly reminiscent of transition state theory, but includes corrections from scattering theory. Then two programs, one for solving complex reactions, the other for solving first order linear kinetic master equations to solve them, have been developed and tested for simple applications.
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.
Resumo:
Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.
Resumo:
Salinity, water temperature, and chlorophyll a (chl-a) biomass were used as performance measures in the period 1999–2001 to evaluate the effect of a hydrological rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM)–Pajarales lagoon complex, Colombia where freshwater diversions were initiated in 1995 and completed in 1998. The objective of this study was to evaluate how diversions of freshwater into previously hypersaline (>80) environments changed the spatial and temporal distribution of environmental characteristics. Following the diversion, 19 surveys and transects using a flow-through system were surveyed in the CGSM–Pajarales complex to continuously measure selected water quality parameters. Geostatistical analysis indicates that hydrology and salinity regimes and water circulation patterns in the CGSM lagoon are largely controlled by freshwater discharge from the Fundacion, Aracataca, and Sevilla Rivers. Residence times in the CGSM lagoon were similar before (15.5 ± 3.8 days) and after (14.2 ± 2.0 days) the rehabilitation project and indicated that the system is flushed regularly. In contrast, chl-a biomass was highly variable in the CGSM–Pajarales lagoon complex and not related to discharge patterns. Mean annual chl-a biomass (44–250 μg L−1) following the diversion project was similar to values recorded since the 1980s and still remains among the highest reported in coastal systems around the world owing to its unique hydrology regulated by the Magdalena River and Sierra Nevada de Santa Marta watersheds and the high teleconnection to the El Niño Southern Oscillation (ENSO). Our results confirm that the reduction in salinity in the CGSM lagoon and Pajarales complex during 1999–2000 was largely driven by high precipitation (2500 mm) induced by the ENSO–La Niña rather than by the freshwater diversions.
Resumo:
This article examines the economic, political and institutional power of the military-industrial complex (MIC) by examining its influence on military spending before and after the events of 9/11. The reasons for the continuity of MIC influence in US foreign policy is explored. This includes the role of military contractors in financing policy planning organizations, the relationship between military contractors and the Defense Department, and the centralization of executive branch authority in foreign policy decision-making, especially during critical junctures or foreign policy crises.
Resumo:
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Resumo:
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^
Resumo:
Melt inclusions are minute magma bodies trapped within growing crystals. Their chemical compositions are useful in deciphering pre-eruptive conditions and magma evolution. The present study examined melt inclusions trapped in phenocrysts from the 3rd and 4th magmatic cycles (1869-1988) at Volcan de Colima, Mexico. Melt inclusions have highly evolved chemical compositions: 65-77% SiO2, >12% A12O3, 3-6% Na2O and K20 and less than 5.5% Fe and Mg. Major element compositions suggest that they are strongly differentiated magmas controlled by fractionation of plagioclase, opx, cpx and hornblende. Water concentrations were measured to be 2.7-3.5 wt. % in cpx hosted inclusions and 0.3-0.7 wt % in opx and plagioclase. Trace element compositions are anomalously low and inversely correlate with water. From this we deduce that Colima lavas and scorias simultaneously differentiate and degas. Moreover, hornblende rim growth rates constrain the ascent of the Colima magmas to -100 days for passive eruptions and >4 days for plinian eruptions.