9 resultados para complex structures up to isometry
em Digital Commons at Florida International University
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^
Resumo:
The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a δ13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the δ 13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. ^ The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. ^ The results indicate that the lowest 85 m of the section, from latest Barremian -earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. ^ The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in δ13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.^
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.
Resumo:
We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.
Resumo:
The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a d13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the d13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. The results indicate that the lowest 85 m of the section, from latest Barremian –earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in d13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.