2 resultados para complementation

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In Enterobacteriaceae, β-lactam antibiotic resistance involves murein recycling intermediates. Murein recycling is a complex process with discrete steps taking place in the periplasm and the cytoplasm. The AmpG permease is critical to this process as it transports N-acetylglucosamine anhydrous N-acetylmuramyl peptides across the inner membrane. In Pseudomonadaceae, this intrinsic mechanism remains to be elucidated. Since the mechanism involves two cellular compartments, the characterization of transporters is crucial to establish the link. Results Pseudomonas aeruginosa PAO1 has two ampG paralogs, PA4218 (ampP) and PA4393 (ampG). Topology analysis using β-galactosidase and alkaline phosphatase fusions indicates ampP andampG encode proteins which possess 10 and 14 transmembrane helices, respectively, that could potentially transport substrates. Both ampP and ampG are required for maximum expression of β-lactamase, but complementation and kinetic experiments suggest they act independently to play different roles. Mutation of ampG affects resistance to a subset of β-lactam antibiotics. Low-levels of β-lactamase induction occur independently of either ampP or ampG. Both ampG and ampP are the second members of two independent two-gene operons. Analysis of the ampG and ampPoperon expression using β-galactosidase transcriptional fusions showed that in PAO1, ampGoperon expression is β-lactam and ampR-independent, while ampP operon expression is β-lactam and ampR-dependent. β-lactam-dependent expression of the ampP operon and independent expression of the ampG operon is also dependent upon ampP. Conclusions In P. aeruginosa, β-lactamase induction occurs in at least three ways, induction at low β-lactam concentrations by an as yet uncharacterized pathway, at intermediate concentrations by an ampPand ampG dependent pathway, and at high concentrations where although both ampP and ampGplay a role, ampG may be of greater importance. Both ampP and ampG are required for maximum induction. Similar to ampC, ampP expression is inducible in an ampR-dependent manner. Importantly, ampP expression is autoregulated and ampP also regulates expression of ampG. Both AmpG and AmpP have topologies consistent with functions in transport. Together, these data suggest that the mechanism of β-lactam resistance of P. aeruginosa is distinct from well characterized systems in Enterobacteriaceae and involves a highly complicated interaction between these putative permeases and known Amp proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanomagenesis is influenced by environmental and genetic factors. In normal cells, ultraviolet (UV) induced photoproducts are successfully repaired by the nucleotide excision repair (NER) pathway. Mice carrying mutations in the xeroderma pigmentosum (Xp) complementation group of genes (Xpa-Xpg) lack the NER pathway and are therefore highly sensitive to UV light; however, they do not develop melanoma after UV exposure. In humans, the Endothelin 3 signaling pathway has been linked to melanoma progression and its metastatic potential. Transgenic mice that over-express Edn3 under the control of the Keratin 5 promoter (K5-Edn3) and exhibit a hyperpigmentation phenotype, were crossed with Xp deficient mice. Because melanoma is highly metastatic and many primary malignancies spread via the lymphatic system, analyzing the lymph nodes may serve useful in assessing the possible spread of tumor cells to other tissues. This study aimed to determine whether the over-expression of Edn3 is sufficient to lead to melanoma metastasis to the lymph nodes. Mice were exposed to UV radiation and analyzed for the presence of skin lesions. Mice presenting skin lesions were sacrificed and the nearest lymph nodes were excised and examined for the presence of metastasis. Mice with melanoma skin lesions presented enlarged and hyperpigmented lymph nodes. Diagnosis of melanoma was established by immunostaining with melanocyte and melanoma cell markers, and while UV radiation caused the development of skin lesions in both K5-Edn3 transgenic and control mice, only those mice carrying the K5-Edn3 transgene were found to develop melanoma metastasis to the lymph nodes. These results indicate that over-expression of Edn3 is sufficient to lead to lymph node metastasis in mice exposed to at least one dose of UV radiation.