2 resultados para competitive interactions

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of resource supply and herbivory in driving competitive interactions among species has been an important but contentious issue within ecology. These variables exhibit different effects on species competition when manipulated in isolation but interact when manipulated together. I tested the direct and interactive effects of nutrient addition and simulated grazing (clipping) on the competitive performance of primary producers and community structure of a seagrass bed in South Florida. One square meter experimental plots were established in a mixed seagrass meadow from August 2007 to July 2009. The experiment was a 3 x 3 factorial experiment: 3 fertility treatments: control, medium (2.4 mg N d−1 and 80 µg P day −1) and high (4.8 mg N d−1 and 160 µg P day−1) x 3 clipping intensities (0, 25% and 50 % biomass removal (G)) x 5 replicates for each treatment = 45 plots). Nutrient additions and simulated grazing were done every two months. Fertilization and simulated grazing decreased sexual reproduction in S. filiforme. Fertilization increased competitive dominance within the primary producers while simulated grazing counteracted this effect by removal of the dominant species. Fertilization ameliorated the negative impacts of simulated grazing while simulated grazing prevented competitive exclusion in the fertilized plots. Nutrient addition and simulated grazing both exerted strong control on plant performance and community structure. Neither bottom up nor top down influences was eliminated in treatments where both factors where present. The effects of fertilization on plant performance were marked under all clipping intensities indicating that the system is regulated by nutrient availability both in the presence or absence of grazers. Clipping effects were strong under both fertilized and unfertilized conditions indicating that the seagrass bed can be simultaneously under top-down control by grazers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photosynthetic bicarbonate () use properties of three widely distributed tropical seagrasses were compared using a series of laboratory experiments. Photosynthetic rates of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were monitored in an enclosed chamber while being subjected to shifts in pH and dissolved inorganic carbon. Specific mechanisms of seagrass use were compared by examining the photosynthetic effects of the carbonic anhydrase inhibitor acetazolamide (AZ). All seagrasses increased photosynthetic rates with reduced pH, suggesting a large effect of dissolved aqueous carbon dioxide (CO2(aq)). However, there was considerable interspecific variation in pH response. T. testudinum was highly sensitive, increasing photosynthetic rates by 100% as the pH was reduced from 8.2 to 7.4, whereas rates in H. wrightii and S. filiforme increased by only 20% over a similar range, and displayed prominent photosynthetic plateaus, indicating an increased capacity for use. Additional incubations that manipulated [] under constant [CO2(aq)] support these findings, as only H. wrightii and S. filiforme increased photosynthetic rates with increasing []. T. testudinum responded to AZ addition, indicating that carbonic anhydrase enzymes facilitate limited use. H. wrightii and S. filiforme showed no response to AZ, suggesting alternate, more efficient mechanisms of use. Estimated kinetic parameters, Ks(CO2) and Vmax, revealed interspecific variation and further support these conclusions. Variation in photosynthetic pH responses and AZ sensitivity indicate distinctions in the carbon use properties of seagrasses exposed to similar environmental conditions. These results suggest that not all seagrasses will similarly respond to future increases in CO2(aq) availability. Attention towards potential shifts in competitive interactions within multispecific seagrass beds is warranted.