39 resultados para coastal monitoring

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.