9 resultados para categorization IT PFC computational neuroscience model HMAX
em Digital Commons at Florida International University
Resumo:
The Ellison Executive Mentoring Inclusive Community Building (ICB) Model is a paradigm for initiating and implementing projects utilizing executives and professionals from a variety of fields and industries, university students, and pre-college students. The model emphasizes adherence to ethical values and promotes inclusiveness in community development. It is a hierarchical model in which actors in each succeeding level of operation serve as mentors to the next. Through a three-step process—content, process, and product—participants must be trained with this mentoring and apprenticeship paradigm in conflict resolution, and they receive sensitivity and diversity training through an interactive and dramatic exposition. ^ The content phase introduces participants to the model's philosophy, ethics, values and methods of operation. The process used to teach and reinforce its precepts is the mentoring and apprenticeship activities and projects in which the participants engage and whose end product demonstrates their knowledge and understanding of the model's concepts. This study sought to ascertain from the participants' perspectives whether the model's mentoring approach is an effective means of fostering inclusiveness, based upon their own experiences in using it. The research utilized a qualitative approach and included data from field observations, individual and group interviews, and written accounts of participants' attitudes. ^ Participants complete ICB projects utilizing The Ellison Model as a method of development and implementation. They generally perceive that the model is a viable tool for dealing with diversity issues whether at work, at school, or at home. The projects are also instructional in that whether participants are mentored or serve as apprentices, they gain useful skills and knowledge about their careers. Since the model is relatively new, there is ample room for research in a variety of areas including organizational studies to determine its effectiveness in combating problems related to various kinds of discrimination. ^
Resumo:
The Ellison Executive Mentoring Inclusive Community Building (ICB) Model is a paradigm for initiating and implementing projects utilizing executives and professionals from a variety of fields and industries, university students, and pre-college students. The model emphasizes adherence to ethical values and promotes inclusiveness in community development. It is a hierarchical model in which actors in each succeeding level of operation serve as mentors to the next. Through a three-step process--content, process, and product--participants must be trained with this mentoring and apprenticeship paradigm in conflict resolution, and they receive sensitivitiy and diversity training, through an interactive and dramatic exposition. The content phase introduces participants to the model's philosophy, ethics, values and methods of operation. The process used to teach and reinforce its precepts is the mentoring and apprenticeship activities and projects in which the participants engage and whose end product demontrates their knowledge and understanding of the model's concepts. This study sought to ascertain from the participants' perspectives whether the model's mentoring approach is an effective means of fostering inclusiveness, based upon their own experiences in using it. The research utilized a qualitative approach and included data from field observations, individual and group interviews, and written accounts of participants' attitudes. Participants complete ICB projects utilizing the Ellison Model as a method of development and implementation. They generally perceive that the model is a viable tool for dealing with diversity issues whether at work, at school, or at home. The projects are also instructional in that whether participants are mentored or seve as apprentices, they gain useful skills and knowledge about their careers. Since the model is relatively new, there is ample room for research in a variety of areas including organizational studies to dertmine its effectiveness in combating problems related to various kinds of discrimination.
Resumo:
This dissertation examines whether-there exists financial constraints and, if so, their implications for investment in research and development expenditures. It develops a theoretical model of credit rationing and research and development in which both are determined simultaneously and endogenously. The model provides a useful tool to examine different policies that may help alleviate the negative the effect of financial constraints faced by firms.^ The empirical evidence presented deals with two different cases, namely, the motor vehicle industry in Germany (1970-1990) and the electrical machinery industry In Spain (1975-1990).^ The innovation in the empirical analysis is that it follows a novel approach to identify events that allow us to isolate the effect of financial constraints in the determination of research and development.^ Further, empirical evidence is presented to show that in the above two cases financial constraints affect investment in physical capital as well.^ The empirical evidence presented supports the results of the theoretical model developed in this dissertation, showing that financial constraints negatively affect the rate of growth of innovation by reducing the intensity of research and development activity. ^
Resumo:
Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.