3 resultados para carbon footprint, contabilità ambientale, web calculator

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.