4 resultados para cameras and camera accessories
em Digital Commons at Florida International University
Resumo:
This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^
Resumo:
In the medical field images obtained from high definition cameras and other medical imaging systems are an integral part of medical diagnosis. The analysis of these images are usually performed by the physicians who sometimes need to spend long hours reviewing the images before they are able to come up with a diagnosis and then decide on the course of action. In this dissertation we present a framework for a computer-aided analysis of medical imagery via the use of an expert system. While this problem has been discussed before, we will consider a system based on mobile devices. Since the release of the iPhone on April 2003, the popularity of mobile devices has increased rapidly and our lives have become more reliant on them. This popularity and the ease of development of mobile applications has now made it possible to perform on these devices many of the image analyses that previously required a personal computer. All of this has opened the door to a whole new set of possibilities and freed the physicians from their reliance on their desktop machines. The approach proposed in this dissertation aims to capitalize on these new found opportunities by providing a framework for analysis of medical images that physicians can utilize from their mobile devices thus remove their reliance on desktop computers. We also provide an expert system to aid in the analysis and advice on the selection of medical procedure. Finally, we also allow for other mobile applications to be developed by providing a generic mobile application development framework that allows for access of other applications into the mobile domain. In this dissertation we outline our work leading towards development of the proposed methodology and the remaining work needed to find a solution to the problem. In order to make this difficult problem tractable, we divide the problem into three parts: the development user interface modeling language and tooling, the creation of a game development modeling language and tooling, and the development of a generic mobile application framework. In order to make this problem more manageable, we will narrow down the initial scope to the hair transplant, and glaucoma domains.
Resumo:
Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera's point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ∼10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera's PSF. The algorithm can also improve dose estimation and treatment planning.^
Resumo:
Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.