13 resultados para building blocks of effective teams
em Digital Commons at Florida International University
Resumo:
Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.
Resumo:
The purpose of this study was to compare the characteristics of effective clinical and theory instructors as perceived by LPN/RN versus generic students in an associate degree nursing program.^ Data were collected from 508 students during the 1996-7 academic year from three NLN accredited associate degree nursing programs. The researcher developed instrument consisted of three parts: (a) Whitehead Characteristics of Effective Clinical Instructor Rating Scale, (b) Whitehead Characteristics of Effective Theory Instructor Rating Scale, and (c) Demographic Data Sheet. The items were listed under five major categories identified in the review of the literature: (a) interpersonal relationships, (b) personality traits, (c) teaching practices, (d) knowledge and experience, and (e) evaluation procedures. The instrument was administered to LPN/RN students in their first semester and to generic students in the third semester of an associate degree nursing program.^ Data was analyzed using a one factor mutivariate analysis of variance (MANOVA). Further t tests were carried out to explore for possible differences between type of student and by group. Crosstabulations of the demographic data were analyzed.^ There were no significant differences found between the LPN/RN versus generic students on their perceptions of either effective theory or effective clinical instructor characteristics. There were significant differences between groups on several of the individual items. There was no significant interaction between group and ethnicity or group and age on the five major categories for either of the two instruments. There was a significant main effect of ethnicity on several of the individual items.^ The differences between the means and standard deviations on both instruments were small, suggesting that all of the characteristics listed for effective theory and clinical instructors were important to both groups of students. Effective teaching behaviors, as indicated on the survey instruments, should be taught to students in graduate teacher education programs. These behaviors should also be discussed by faculty coordinators supervising adjunct faculty. Nursing educators in associate degree nursing programs should understand theories of adult learning and implement instructional strategies to enhance minority student success. ^
Resumo:
The focus of this study was to explain the extent to which theoretically effective teaching strategies taught in a course on generic instructional strategies are being implemented by teachers in their actual teaching practice. ^ A multivariate causal-comparative (ex-post-facto) design was used to answer the research question. A teacher observation protocol, the General Instructional Strategies Analysis (GISA) was constructed and used to assess the utilization of instructional strategies in the classroom. The data of this study also included open-ended field notes taken during observations. ^ Multivariate Analyses of Variance (MANOVA) was used to compare the teaching strategies (set, effective explanation, hands-on activity, cooperative learning activity, higher order questioning, closure) of the group who had taken a general instructional strategies course (N=36) and the group who had not (N=36). Results showed a statistically significant difference between the two groups. The group who had taken the course implemented these strategies more effectively in almost all categories of effective teaching. Follow-up univariate tests of the dependent variables showed significant differences between the two groups in five of the six areas (hands-on activity being an exception). A second MANOVA compared the two groups on the effective use of attending behaviors (teacher movement/eye contact/body language/physical space, brief verbal acknowledgements/voice inflection/modulation/pitch, use of visuals, prompting/probing, praise/feedback/rewards, wait-time I and II). Results also showed a multivariate difference between the two groups. Follow-up univariate tests on the related dependent variables showed that five of the six were significantly different between the two groups. The group who had taken the course implemented the strategies more effectively. An analysis of the field notes provided further evidence regarding the pervasiveness of these differences between the teaching practices of the two groups. ^ It was concluded that taking a course in general instructional strategies increases the utilization of effective strategies in the classroom by teachers. ^
Resumo:
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.
Resumo:
This thesis develops and validates the framework of a specialized maintenance decision support system for a discrete part manufacturing facility. Its construction utilizes a modular approach based on the fundamental philosophy of Reliability Centered Maintenance (RCM). The proposed architecture uniquely integrates System Decomposition, System Evaluation, Failure Analysis, Logic Tree Analysis, and Maintenance Planning modules. It presents an ideal solution to the unique maintenance inadequacies of modern discrete part manufacturing systems. Well established techniques are incorporated as building blocks of the system's modules. These include Failure Mode Effect and Criticality Analysis (FMECA), Logic Tree Analysis (LTA), Theory of Constraints (TOC), and an Expert System (ES). A Maintenance Information System (MIS) performs the system's support functions. Validation was performed by field testing of the system at a Miami based manufacturing facility. Such a maintenance support system potentially reduces downtime losses and contributes to higher product quality output. Ultimately improved profitability is the final outcome. ^
Resumo:
This dissertation evaluated the feasibility of using commercially available immortalized cell lines in building a tissue engineered in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Mouse endothelial cell line and rat astrocyte cell lines purchased from American Type Culture Collections (ATCC) were the building blocks of the co-culture model. An astrocyte derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel in vitro biomimetic basement membrane for the endothelial cells to form endothelial tight junctions. Trans-endothelial electrical resistance (TEER) and solute mass transport studies were engaged to quantitatively evaluate the tight junction formation on the in-vitro BBB models. Immuno-fluorescence microscopy and Western Blot analysis were used to qualitatively verify the in vitro expression of occludin, one of the earliest discovered tight junction proteins. Experimental data from a total of 12 experiments conclusively showed that the novel BBB in vitro co-culture model with the astrocyte derived aECM (CO+aECM) was promising in terms of establishing tight junction formation represented by TEER values, transport profiles and tight junction protein expression when compared with traditional co-culture (CO) model setups and endothelial cells cultured alone. Experimental data were also found to be comparable with several existing in vitro BBB models built from various methods. In vitro colorimetric sulforhodamine B (SRB) assay revealed that the co-cultured samples with aECM resulted in less cell loss on the basal sides of the insert membranes than that from traditional co-culture samples. The novel tissue engineering approach using immortalized cell lines with the addition of aECM was proven to be a relevant alternative to the traditional BBB in vitro modeling.
Resumo:
A major challenge of modern teams lies in the coordination of the efforts not just of individuals within a team, but also of teams whose efforts are ultimately entwined with those of other teams. Despite this fact, much of the research on work teams fails to consider the external dependencies that exist in organizational teams and instead focuses on internal or within team processes. Multi-Team Systems Theory is used as a theoretical framework for understanding teams-of-teams organizational forms (Multi-Team Systems; MTS's); and leadership teams are proposed as one remedy that enable MTS members to dedicate needed resources to intra-team activities while ensuring effective synchronization of between-team activities. Two functions of leader teams were identified: strategy development and coordination facilitation; and a model was developed delineating the effects of the two leader roles on multi-team cognitions, processes, and performance.^ Three hundred eighty-four undergraduate psychology and business students participated in a laboratory simulation that modeled an MTS; each MTS was comprised of three, two-member teams each performing distinct but interdependent components of an F-22 battle simulation task. Two roles of leader teams supported in the literature were manipulated through training in a 2 (strategy training vs. control) x 2 (coordination training vs. control) design. Multivariate analysis of variance (MANOVA) and mediated regression analysis were used to test the study's hypotheses. ^ Results indicate that both training manipulations produced differences in the effectiveness of the intended form of leader behavior. The enhanced leader strategy training resulted in more accurate (but not more similar) MTS mental models, better inter-team coordination, and higher levels of multi-team (but not component team) performance. Moreover, mental model accuracy fully mediated the relationship between leader strategy and inter-team coordination; and inter-team coordination fully mediated the effect of leader strategy on multi-team performance. Leader coordination training led to better inter-team coordination, but not to higher levels of either team or multi-team performance. Mediated Input-Process-Output (I-P-O) relationships were not supported with leader coordination; rather, leader coordination facilitation and inter-team coordination uniquely contributed to component team and multi-team level performance. The implications of these findings and future research directions are also discussed. ^
Resumo:
Modern civilization has developed principally through man's harnessing of forces. For centuries man had to rely on wind, water and animal force as principal sources of power. The advent of the industrial revolution, electrification and the development of new technologies led to the application of wood, coal, gas, petroleum, and uranium to fuel new industries, produce goods and means of transportation, and generate the electrical energy which has become such an integral part of our lives. The geometric growth in energy consumption, coupled with the world's unrestricted growth in population, has caused a disproportionate use of these limited natural resources. The resulting energy predicament could have serious consequences within the next half century unless we commit ourselves to the philosophy of effective energy conservation and management. National legislation, along with the initiative of private industry and growing interest in the private sector has played a major role in stimulating the adoption of energy-conserving laws, technologies, measures, and practices. It is a matter of serious concern in the United States, where ninety-five percent of the commercial and industrial facilities which will be standing in the year 2000 - many in need of retrofit - are currently in place. To conserve energy, it is crucial to first understand how a facility consumes energy, how its users' needs are met, and how all internal and external elements interrelate. To this purpose, the major thrust of this report will be to emphasize the need to develop an energy conservation plan that incorporates energy auditing and surveying techniques. Numerous energy-saving measures and practices will be presented ranging from simple no-cost opportunities to capital intensive investments.
Resumo:
There is significant national evidence the language development of four year-olds is a critical area for later school success (Brooks-Gunn, Fuligni, & Berlin, 2003; Cunningham, & Stanovich, 1998). This study originated as part of Literacy Intervention X (LIX), a larger national study conducted to examine the effectiveness of early literacy curricula implemented in subsidized childcare centers. The professional development of childcare center providers is key to improving the quality of subsidized care. In exploring the mentoring practices of nine LIX literacy coaches, the researcher investigated the perceptions of what best mentoring practices facilitated the implementation of literacy curricula by childcare providers. A qualitative case study was conducted using a combination of participant observer notes, document analysis, and focus group semi-structured interviews. The researcher is a participant observer, one of the nine Literacy Coaches. The best mentoring practices from the perspective of the literacy coaches are related to building relationships including trust, mutual respect, support, empathy, and encouragement with the childcare providers, the center directors, and with fellow literacy coaches. Clear, constant, and consistent communication with the childcare providers was a vital mentoring practice in building a relationship between the literacy coach and childcare provider. Another best mentoring practice in building a relationship with the childcare provider was the perceptions of the literacy coaches as co-learners in the mentoring process. The best mentoring practices highlighted in this study exemplified the kind of effective professional development that builds on the strengths of the childcare providers and does not disrupt the childcare centers or the services provided by the subsidized childcare programs that meet the needs of children and families. The experience of these nine literacy coaches, including their perceptions of effective mentoring practices, along with lesson learned about relationships, mentoring team structures, and general project design sheds light on the challenge of mentoring subsidized childcare providers in future literacy intervention projects.
Resumo:
The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.
Resumo:
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^
Resumo:
This paper introduces a new construct that we term Math Mediated Language (MML) focusing on the notion that common or everyday terms with mathematical meanings are important building blocks for students’ mathematical reasoning. A survey given to 96 pre-service early childhood educators indicated clear patterns of perceptions of these terms.
Resumo:
The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.