4 resultados para blue light

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bl. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastomataceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bi. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastoma- taceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495–644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The iridescentb lue color of several Selaginellasp ecies is caused by a physical effect, thinfilm interference.P redictionsf or a model film have been confirmedb y electronm icroscopyo f S. willdenowaEnid S. uncinataF. or the latters pecies iridescencec ontributest o leaf absorption at wavelengths above 450 nm and develops in environments enriched with far-red (730 nm) light. This evidence supports the involvement of phytochrome in the developmental control of iridescence.