2 resultados para blood levels

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies have shown that the environmental conditions of the home are important predictors of health, especially in low-income communities. Understanding the relationship between the environment and health is crucial in the management of certain diseases. One health outcome related to the home environment among urban, minority, and low-income children is childhood lead poisoning. The most common sources of lead exposure for children are lead paint in older, dilapidated housing and contaminated dust and soil produced by accumulated residue of leaded gasoline. Blood lead levels (BLL) as low as 10 μg/dL in children are associated with impaired cognitive function, behavior difficulties, and reduced intelligence. Recently, it is suggested that the standard for intervention be lowered to BLL of 5 μg /dl. The objectives of our report were to assess the prevalence of lead poisoning among children under six years of age and to quantify and test the correlations between BLL in children and lead exposure levels in their environment. This cross-sectional analysis was restricted to 75 children under six years of age who lived in 6 zip code areas of inner city Miami. These locations exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Using the 5 μg/dL as the cutoff point, the prevalence of lead poisoning among the study sample was 13.33%. The study revealed that lead levels in floor dust and window sill samples were positively and significantly correlated with BLL among children (p < 0.05). However, the correlations between BLL and the soil, air, and water samples were not significant. Based on this pilot study, a more comprehensive environmental study in surrounding inner city areas is warranted. Parental education on proper housecleaning techniques may also benefit those living in the high lead-exposed communities of inner city Miami.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of postmortem toxicology, principles from pharmacology and toxicology are combined in order to determine if exogenous substances contributed to ones death. In order to make this determination postmortem and (whenever available) antemortem blood samples may be analyzed. This project focused on evaluating the relationship between postmortem and antemortem blood drug levels, in order to better define an interpretive framework for postmortem toxicology. To do this, it was imperative to evaluate the differences in antemortem and postmortem drug concentrations, determine the role microbial activity and evaluate drug stability. Microbial studies determined that the bacteria Escherichia coli and Pseudomonas aeruginosa could use the carbon structures of drugs as a source of food. This would suggest prior to sample collection, microbial activity could potentially affect drug levels. This process however would stop before toxicologic evaluation, as at autopsy blood samples are stored in tubes containing the antimicrobial agent sodium fluoride. Analysis of preserved blood determined that under the current storage conditions sodium fluoride effectively inhibited microbial growth. Nonetheless, in many instances inconsistent drug concentrations were identified. When comparing antemortem to postmortem results, diphenhydramine, morphine, codeine and methadone, all showed significantly increased postmortem drug levels. In many instances, increased postmortem concentrations correlated with extended postmortem intervals. Other drugs, such as alprazolam, were likely to have concentration discrepancies when short antemortem to death intervals were coupled with extended postmortem intervals. While still others, such as midazolam followed the expected pattern of metabolism and elimination, which often resulted in decreased postmortem concentrations. The importance of drug stability was displayed when reviewing the clonazepam/ 7-aminoclonazepam data, as the parent drug commonly converted to its metabolite even when stored in the presence of a preservative. In instances of decreasing postmortem drug concentrations the effect of refrigerated storage could not be ruled out. A stability experiment, which contained codeine, produced data that indicated concentrations could continue to decline under the current storage conditions. The cumulative data gathered for this experiment was used to identify concentration trends, which subsequently aided in the development of interpretive considerations for the specific analytes examined in the study.