3 resultados para binary choice

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. ^ This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. ^ The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.