2 resultados para bending stiffness
em Digital Commons at Florida International University
Resumo:
Current artificial heart valves are classified as mechanical and bioprosthetic. An appealing pathway that promises to overcome the shortcomings of commercially available heart valves is offered by the interdisciplinary approach of cardiovascular tissue engineering. However, the mechanical properties of the Tissue Engineering Heart Valves (TEHV) are limited and generally fail in the long-term use. To meet this performance challenge novel biodegradable triblock copolymer poly(ethylene oxide)-polypropylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO or F108) crosslinked to Silk Fibroin (F108-SilkC) to be used as tri-leaflet heart valve material was investigated. ^ Synthesis of ten polymers with varying concentration and thickness (55 µm, 75 µm and 100 µm) was achieved via a covalent crosslinking scheme using bifunctional polyethylene glycol diglycidyl ether (PEGDE). Static and fatigue testing were used to assess mechanical properties of films, and hydrodynamic testing was performed to determine performance under a simulated left ventricular flow regime. The crosslinked copolymer (F108-Silk C) showed greater flexibility and resilience, but inferior ultimate tensile strength, by increasing concentration of PEGDE. Concentration molar ratio of 80:1 (F108: Silk) and thickness of 75 µm showed longer fatigue life for both tension-tension and bending fatigue tests. Four valves out of twelve designed satisfactorily complied with minimum performance requirement ISO 5840, 2005. ^ In conclusion, it was demonstrated that the applicability of a degradable polymer in conjugation with silk fibroin for tissue engineering cardiovascular use, specifically for aortic valve leaflet design, met the performance demands. Thinner thicknesses (t<75 µm) in conjunction with stiffness lower than 320 MPa (80:1, F108: Silk) are essential for the correct functionality of proposed heart valve biomaterial F108-SilkC. Fatigue tests were demonstrated to be a useful tool to characterize biomaterials that undergo cyclic loading. ^
Resumo:
This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.