2 resultados para bandwidth 3.1 GHz to 10.6 GHz
em Digital Commons at Florida International University
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
The work on CERP monitoring item 3.1.3.5 (Marl prairie/slough gradients) is being conducted by Florida International University (Dr Michael Ross, Project Leader), with Everglades National Park (Dr. Craig Smith) providing administrative support and technical consultation. As of January 2006 the funds transferred by ACOE to ENP, and subsequently to FIU, have been entirely expended or encumbered in salaries or wages. The project work for 2005 started rather late in the fiscal year, but ultimately accomplished the Year 1 goals of securing a permit to conduct the research in Everglades National Park, finalizing a detailed scope of work, and sampling marsh sites which are most easily accessed during the wet season. 46 plots were sampled in detail, and a preliminary vegetation classification distinguished three groups among these sites (Sawgrass marsh, sawgrass and other, and slough) which may be arranged roughly along a hydrologic gradient from least to most persistently inundated . We also made coarser observations of vegetation type at 5-m intervals along 2 transects totaling ~ 5 km. When these data were compared with similar observations made in 1998-99, it appeared that vegetation in the western portion of Northeast Shark Slough (immediately east of the L-67 extension) had shifted toward a more hydric type during the last 6 years, while vegetation further east was unchanged in this respect. Because this classification and trend analysis is based on a small fraction of the data set that will be available after the first cycle of sampling (3 years from now), the results should not be interpreted too expansively. However, they do demonstrate the potential for gaining a more comprehensive view of marsh vegetation structure and dynamics in the Everglades, and will provide a sound basis for adaptive management.