3 resultados para audio data classification
em Digital Commons at Florida International University
Resumo:
Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^
Resumo:
A comprehensive, broadly accepted vegetation classification is important for ecosystem management, particularly for planning and monitoring. South Florida vegetation classification systems that are currently in use were largely arrived at subjectively and intuitively with the involvement of experienced botanical observers and ecologists, but with little support in terms of quantitative field data. The need to develop a field data-driven classification of South Florida vegetation that builds on the ecological organization has been recognized by the National Park Service and vegetation practitioners in the region. The present work, funded by the National Park Service Inventory and Monitoring Program - South Florida/Caribbean Network (SFCN), covers the first stage of a larger project whose goal is to apply extant vegetation data to test, and revise as necessary, an existing, widely used classification (Rutchey et al. 2006). The objectives of the first phase of the project were (1) to identify useful existing datasets, (2) to collect these data and compile them into a geodatabase, (3) to conduct an initial classification analysis of marsh sites, and (4) to design a strategy for augmenting existing information from poorly represented landscapes in order to develop a more comprehensive south Florida classification.
Resumo:
The purpose of this project was to evaluate the use of remote sensing 1) to detect and map Everglades wetland plant communities at different scales; and 2) to compare map products delineated and resampled at various scales with the intent to quantify and describe the quantitative and qualitative differences between such products. We evaluated data provided by Digital Globe’s WorldView 2 (WV2) sensor with a spatial resolution of 2m and data from Landsat’s Thematic and Enhanced Thematic Mapper (TM and ETM+) sensors with a spatial resolution of 30m. We were also interested in the comparability and scalability of products derived from these data sources. The adequacy of each data set to map wetland plant communities was evaluated utilizing two metrics: 1) model-based accuracy estimates of the classification procedures; and 2) design-based post-classification accuracy estimates of derived maps.