5 resultados para asexual reproduction
em Digital Commons at Florida International University
Resumo:
Four aspects of horizontal genetic transfer during heterokaryon formation were examined in the asexual pathogen Fusarium oxysporum f.sp. cubense (Foc): (1) variability based on method of heterokaryon formation; (2) differences in nuclear and mitochondrial inheritance; (3) the occurrence of recombination without nuclear fusion; (4) the occurrence of horizontal genetic transfer between distantly related isolates. The use of non-pathogenic strains of Fusarium oxysporum as biocontrol agents warrants a closer examination at the reproductive life cycle of this fungus, particularly if drug resistance or pathogenicity genes can be transmitted horizontally. Experiments were divided into three phases. Phase I looked at heterokaryon formation by hyphal anastomosis and protoplast fusion. Phase II was a time course of heterokaryon formation to look at patterns of nuclear and mitochondrial inheritance. Phase III examined the genetic relatedness of the different vegetative compatibility groups using a multilocus analysis approach. Heterokaryon formation was evident within and between vegetative compatibility groups. Observation of non-parental genotypes after heterokaryon formation confirmed that, although a rare event, horizontal genetic transfer occurred during heterokaryon formation. Uniparental mitochondria inheritance was observed in heterokaryons formed either by hyphal anastomosis or protoplast fusion. Drug resistance was expressed during heterokaryon formation, even across greater genetic distances than those distances imposed by vegetative compatibility. Phylogenies inferred from different molecular markers were incongruent at a significant level, challenging the clonal origins of Foc. Mating type genes were identified in this asexual pathogen Polymorphisms were detected within a Vegetative Compatibility Group (VCG) suggesting non-clonal inheritance and/or sexual recombination in Foc. This research was funded in part by a NIH-NIGMS (National Institutes of Health-National Institute of General Medical Sciences) Grant through the MBRS (Minority Biomedical Research Support), the Department of Biological Sciences and the Tropical Biology Program at FIU. ^
Resumo:
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction—spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p ≤ 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.
Resumo:
Ecological monitoring is key to successful ecosystem restoration. Because all components within an ecosystem cannot be monitored, it is important to select indicators that are representative of the system, integrate system responses, clearly respond to system change, can be effectively and efficiently monitored, and are easily communicated. The roseate spoonbill is one ecological indicator species that meets these criteria within the Everglades ecosystem. Monitoring of roseate spoonbills in Florida Bay over the past 70 years has shown that aspects of this species’ reproduction respond to changes in hydrology and corresponding changes in prey abundance and availability. This indicator uses nesting location, nest numbers and nesting success in response to food abundance and availability. In turn, prey abundance is a function of hydrological conditions (especially water depth) and salinity. Metrics and targets for these performance measures were established based on previous findings. Values of each metric were translated into indices and identified as stoplight colors with green indicating that a given target has been met, yellow indicating that conditions are below the target, but within an acceptable range of it, and red indicating the measure is performing poorly in relation to the target.
Resumo:
Juvenile hormone (JH) is crucial for the stimulation and progression of oogenesis from emergence to the previtellogenic resting stage in female Aedes aegypti mosquitoes. Juvenile hormone has been suggested to be among the many substances transferred form the male accessory glands to the female during copulation but no evidence for this has previously been provided. Quantification of JH III in the accessory glands of males and in the bursae copulatrix and spermathecae of mated females was performed using HPLC-FD. These amounts were measured in relation to the quality of adult sugar feeding in the male. The effect of this variable transfer was measured on two fecundity markers that occur during the previtellogenic stage of oogenesis, specifically follicular resorption and ovarian lipids. Male mosquitoes provided with 20% sucrose contained ~ 60% greater amount of JH in the accessory glands and transferred 4 fmol more JH during copulation than males provided with 3% sucrose. These differences resulted in a nearly 40% reduction in follicular resorption and an approximate 3-fold increase in lipid content in the ovaries of mated females during the previtellogenic stage. These results suggest that the contribution of JH from the male is dependent on the quality of nutrition obtained during adult sugar feeding. Female fecundity is likely responsive to these variable previtellogenic effects, possibly resulting in a difference in the number of eggs laid. Improvements in female reproductive output may have wider implications in the transmission of diseases attributed to this important arbovirus vector.
Resumo:
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction— spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p < 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.