11 resultados para architectural thresholds

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B to develop construction specifications and process control manual for repair and retrofit of concrete structures using bonded FRP systems. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The bond interface between FRP and concrete was modeled by a series of nonlinear springs. The model was validated against test data from the present study as well as those available from the literature. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of ±1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic.^ This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakly electric fish produce a dual function electric signal that makes them ideal models for the study of sensory computation and signal evolution. This signal, the electric organ discharge (EOD), is used for communication and navigation. In some families of gymnotiform electric fish, the EOD is a dynamic signal that increases in amplitude during social interactions. Amplitude increase could facilitate communication by increasing the likelihood of being sensed by others or by impressing prospective mates or rivals. Conversely, by increasing its signal amplitude a fish might increase its sensitivity to objects by lowering its electrolocation detection threshold. To determine how EOD modulations elicited in the social context affect electrolocation, I developed an automated and fast method for measuring electroreception thresholds using a classical conditioning paradigm. This method employs a moving shelter tube, which these fish occupy at rest during the day, paired with an electrical stimulus. A custom built and programmed robotic system presents the electrical stimulus to the fish, slides the shelter tube requiring them to follow, and records video of their movements. I trained the electric fish of the genus Sternopygus was trained to respond to a resistive stimulus on this apparatus in 2 days. The motion detection algorithm correctly identifies the responses 91% of the time, with a false positive rate of only 4%. This system allows for a large number of trials, decreasing the amount of time needed to determine behavioral electroreception thresholds. This novel method enables the evaluation the evolutionary interplay between two conflicting sensory forces, social communication and navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People’s authentic sense of place is being overshadowed by less authentic experiences referred to as placelessness. Consequently, a demand for experiential interior environments has surfaced. Experiential environmental and place attachment theories suggested that the relationships between self, others, and the environment are what encourage users in creating meaningful authentic experiences. This qualitative study explored the roles of the experiential interior architectural features in affording users of hospitality environments higher-level needs, such as meanings of place. For the case study, ten participants stayed at a hotel for two nights. Participants were given a guided list of ten facets of an experience, which was insidiously structured by both experiential environmental and place attachment theories. The participants used photographs to document each of the facets on the guided list. The photos were then used during the photo elicitation interviews, which evoked additional qualitative information. Participants identified specific interior architectural features and described them using the themes associated to place attachment theories. The findings revealed that the interior architectural features might enrich the meanings a person associates with a given place. Possibly affording users higher-level needs. As a result, if an experiential interior environment allows users to foster relationships between self, others, and the physical environment, they may experience more authentic experiences and give more meanings to a place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread damage to roofing materials (such as tiles and shingles) for low-rise buildings, even for weaker hurricanes, has raised concerns regarding design load provisions and construction practices. Currently the building codes used for designing low-rise building roofs are mainly based on testing results from building models which generally do not simulate the architectural features of roofing materials that may significantly influence the wind-induced pressures. Full-scale experimentation was conducted under high winds to investigate the effects of architectural details of high profile roof tiles and asphalt shingles on net pressures that are often responsible for damage to these roofing materials. Effects on the vulnerability of roofing materials were also studied. Different roof models with bare, tiled, and shingled roof decks were tested. Pressures acting on both top and bottom surfaces of the roofing materials were measured to understand their effects on the net uplift loading. The area-averaged peak pressure coefficients obtained from bare, tiled, and shingled roof decks were compared. In addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify the effects of tiles' cavity internal pressure. Both the full-scale and the wind tunnel test results showed that underside pressure of a roof tile could either aggravate or alleviate wind uplift on the tile based on its orientation on the roof with respect to the wind angle of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is located near the center of the roof deck. Bare deck modeling to estimate design wind uplift on shingled decks may be acceptable for most locations but not for field locations; it could underestimate the uplift on shingles by 30-60%. In addition, some initial quantification of the effects of roofing materials on wind uplift was performed by studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare deck. Vulnerability curves, with and without considering the effects of tiles' cavity internal pressure, showed significant differences. Aerodynamic load provisions for low-rise buildings' roofs and their vulnerability can thus be more accurately evaluated by considering the effects of the roofing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded repair of concrete structures with fiber reinforced polymer (FRP) systems is increasingly being accepted as a cost-efficient and structurally viable method of rapid rehabilitation of concrete structures. However, the relationships between long-term performance attributes, service-life, and details of the installation process are not easy to quantify. Accordingly, there is currently a lack of generally accepted construction specifications, making it difficult for the field engineer to certify the adequacy of the construction process. ^ The objective of the present study, as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B, was to investigate the effect of surface preparation on the behavior of wet lay-up FRP repair systems and consequently develop rational thresholds that provide sufficient performance. ^ The research program was comprised of both experimental and analytical work for wet lay-up FRP applications. The experimental work included flexure testing of sixty-seven (67) reinforced concrete beams and bond testing of ten (10) reinforced concrete blocks. Four different parameters were studied: surface roughness, surface flatness, surface voids and bug holes, and surface cracks/cuts. The findings were analyzed from various aspects and compared with the data available in the literature. As part of the analytical work, finite element models of the flexural specimens with surface flaws were developed using ANSYS. The purpose of this part was to extend the parametric study on the effects of concrete surface flaws and verify the experimental results based on nonlinear finite element analysis. ^ Test results showed that surface roughness does not appear to have a significant influence on the overall performance of the wet lay-up FRP systems with or without adequate anchorage, and whether failure was by debonding or rupture of FRP. Both experimental and analytical results for surface flatness proved that peaks on concrete surface, in the range studied, do not have a significant effect on the performance of wet lay-up FRP systems. However, valleys of particular size could reduce the strength of wet lay-up FRP systems. Test results regarding surface voids and surface cracks/cuts revealed that previously suggested thresholds for these flaws appear to be conservative, as also confirmed by analytical study. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems, and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of +1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic. This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores how architecture can adapt local vernacular design principles to contemporary building design in a rural setting. Vernacular buildings in Guyana present a unique and coherent set of design principles developed in response to climatic and cultural conditions. The concept of “habitus” proposed by philosopher Pierre Bourdieu describing the evolving nature of social culture was used to interpret Guyanese local buildings. These principles were then applied to the design of a Women’s Center in the village of Port Mourant on the east coast of Guyana. The design specifically interpreted the “bottom-house” of local Guyanese architecture, an inherently flexible transitional outdoor space beneath raised buildings. The design of the Women’s Center demonstrates how contemporary architectural design can respond to climatic requirements, local preferences and societal needs to support the local culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standards of proof in law serve the purpose of instructing juries as to the expected levels of confidence in determinations of fact. In criminal trials, to reach a guilty verdict a jury must be satisfied beyond a reasonable doubt, and in civil trials by a preponderance of the evidence. The purposes of this study are to determine the quantitative thresholds used to make these determinations; to ascertain the levels of juror agreement with basic principles of justice; and to try to predict thresholds and beliefs by juror personality characteristics. Participants read brief case descriptions and indicated thresholds in percentages, their beliefs in various principles, and completed three personality measures. A 92-94% threshold in criminal and an 80% threshold in civil matters was found; but prediction by personality was not supported. Significant percentages of jurors disavowed the presumptions of innocence and right to counsel.