3 resultados para anti-doping regulation

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range. ^