10 resultados para anoxic

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important episode of carbon sequestration, Oceanic Anoxic Event 1a (OAE-1a), characterizes the Lower Aptian worldwide, and is mostly known from deeper-water settings. The present work of two Lower Aptian deposits, Madotz (N Spain) and Curití Quarry (Colombia), is a multiproxy study that includes fossil assemblages, microfacies, X-ray diffraction bulk and clay mineralogy, elemental analyses (major, minor, trace elements), Rock-Eval pyrolysis, biomarkers, inorganic and organic carbon content, and stable carbon isotopes. The results provide baseline evidence of the local and global controlling environmental factors influencing OAE-1a in shallow-water settings. The data also improve our general understanding of the conditions under which organic-carbon-rich deposits accumulate. The sequence at Madotz includes four intervals (Unit 1; Subunits 2a, 2b and 2c) that overlap the times prior to, during and after the occurrence of OAE-1a. The Lower Unit 1(3m thick) is essentially siliciclastic, and Subunit 2a (20m) contains Urgonian carbonate facies that document abruptly changing platform conditions prior to OAE-1a. Subunit 2b (24.4 m) is a mixed carbonate-siliciclastic facies with orbitolinid-rich levels that coincides with OAE-1a δ13C stages C4-C6, and is coeval with the upper part of the Deshayesites forbesi ammonite zone. Levels with pyrite and the highest TOC values (0.4-0.97%), interpreted as accumulating under suboxic conditions, and are restricted to δ13C stages C4 and C5. The best development of the suboxic facies is at the level representing the peak of the transgression. Subunit 2c, within δ13C stage C7, shows a return of the Urgonian facies. The 23.35-m section at Curití includes a 6.3-m interval at the base of the Paja Formation dominated by organic-rich marlstones and shales lacking benthic fossils and bioturbation, with TOC values as high as 8.84%. The interval overlies a level containing reworked and phosphatized assemblages of middle Barremian to lowest Aptian ammonites. The range of values and the overall pattern of the δ13Corg (-22.05‰ to -20.47‰) in the 6.3m-interval is comparable with Lower Aptian δ13C stage C7. Thus, conditions of oxygen depletion at this site also occurred after Oceanic Anoxic Event-1a, which developed between carbon isotope stages C3 and C6. Both sites, Madotz and Curití, attest to the importance of terrigenous and nutrient fluxes in increasing OM productivity that led to episodic oxygen deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Peña Formation extending through the early Albian. ^ The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Peña Formation. ^ Four ammonite biozones are established: (1) The Dufrenoyia justinae Zone for the late Early Aptian, (2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, (3) The Cheloniceras inconstans Zone for the early Late Aptian, and (4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. ^ Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. ^ Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Peña Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Peña Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Peña continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. ^ Results of carbon/carbonate content analyses show that changes from the Cupido to the La Peña facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poor agreement between 3H/3He ages and CFC-11 and CFC-12 ages suggests that CFCs may not be conservative tracers in the Everglades National Park. 3H/3He ages were used to calculate the expected concentration of CFC-11 and CFC-12 in groundwater from wells 2 to 73 m deep. The expected concentrations of CFCs were compared to the measured concentrations and plots of the % CFC-12 and CFC-11 remaining offered no evidence that significant CFC removal was occurring in the groundwater at depths ≥2 m, suggesting that CFC removal occurs at shallower depths. Except where CFC contamination was suspected, CFC-11, CFC-12 and CFC-113 concentrations in fresh surface water were nearly always below solubility equilibrium with the atmosphere. Measurements of CFC-11, CFC-12 and CFC-113 in pore water indicate a 50–90% decrease in concentration 5 cm below the groundwater–surface water (GW–SW) interface. In the same 5 cm interval CH4 concentrations increased by 300–1000%. This suggested that CFCs were removed at the GW–SW interface, possibly by methane-producing bacteria. CFC derived recharge ages should therefore be viewed with caution when recharging water percolates through anoxic methanogenic sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a δ13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the δ 13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. ^ The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. ^ The results indicate that the lowest 85 m of the section, from latest Barremian -earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. ^ The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in δ13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Pena Formation extending through the early Albian. The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Pena Formation. Four ammonite biozones are established: 1) The Dufrenoyia justinae Zone for the late Early Aptian, 2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, 3) The Cheloniceras inconstans Zone for the early Late Aptian, and 4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Pena Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Pena Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Pena continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. Results of carbon/carbonate content analyses show that changes from the Cupido to the La Pena facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a d13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the d13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. The results indicate that the lowest 85 m of the section, from latest Barremian –earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in d13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.