2 resultados para analysis of covariance

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was an evaluation of a Field Project Model Curriculum and its impact on achievement, attitude toward science, attitude toward the environment, self-concept, and academic self-concept with at-risk eleventh and twelfth grade students. One hundred eight students were pretested and posttested on the Piers-Harris Children's Self-Concept Scale, PHCSC (1985); the Self-Concept as a Learner Scale, SCAL (1978); the Marine Science Test, MST (1987); the Science Attitude Inventory, SAI (1970); and the Environmental Attitude Scale, EAS (1972). Using a stratified random design, three groups of students were randomly assigned according to sex and stanine level, to three treatment groups. Group one received the field project method, group two received the field study method, and group three received the field trip method. All three groups followed the marine biology course content as specified by Florida Student Performance Objectives and Frameworks. The intervention occurred for ten months with each group participating in outside-of-classroom activities on a trimonthly basis. Analysis of covariance procedures were used to determine treatment effects. F-ratios, p-levels and t-tests at p $<$.0062 (.05/8) indicated that a significant difference existed among the three treatment groups. Findings indicated that groups one and two were significantly different from group three with group one displaying significantly higher results than group two. There were no significant differences between males and females in performance on the five dependent variables. The tenets underlying environmental education are congruent with the recommendations toward the reform of science education. These include a value analysis approach, inquiry methods, and critical thinking strategies that are applied to environmental issues. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^