2 resultados para agarose tunnels
em Digital Commons at Florida International University
Resumo:
Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.
Resumo:
Complement factor B and C2 are two central serine proteases of the alternative and classical complement pathways, respectively, that serve as the catalytic subunits of the C3 convertase. Research has been completed using a female Japanese medaka fish, (Oryzias latipes), and other teleost and elasmobrach species in order to isolate eDNA clones and perform linkage analysis of the Bf/C2 gene(s). To further analyze the evolution of the complement system in teleosts, different tissues than the ones from previous studies of medaka fish were analyzed for the constitutive gene expression of factor B and C2. Bf/C2 sequences were amplified by reverse transcription-polymerase chain reaction with primers corresponding to the common amino acid sequences shared by mammalian Bf and C2. Agarose gel electrophoresis was used to visualize sample bands and to calculate the concentration of gene expression of the Bf/C2 gene(s) in each tissue. All five tissue types, kidney, liver, muscle, testis, and spleen from a male medaka fish demonstrated Bf/C2 gene(s) expression, confirming that the messages of Bf/C2 gene(s) are distributed throughout the medaka fish. Tissues of the spleen, liver, and kidney contained the highest concentrations of expression of Bf/C2 gene( s ), while tissues of the muscle and testis contained the lowest concentrations. This research also determined that RT-PCR allowed for more sensitive analysis of gene expression than other molecular biology techniques such as Northern blotting analysis.