5 resultados para adipogenesis

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin signaling is one of the main initiators of adipogenesis, the conversion from pre-adipocyte to adipocyte or lipid droplet. Rab proteins are the master regulator of intracellular trafficking and endosome fusion in endocytosis, making them potential regulators of insulin signaling in adipogenesis. Pre-adipocytes 3T3-Ll cells expressing several Rab5 constructs were used to examine the effect of dehydroleucodine (DhL ), a sesquiterpene lactone isolated from aerial parts of Artemisia douglasiana Besser. The results obtained identify Rab5 deactivation as a key step for adipogenesis by forming signaling endosomes. The addition of DhL significantly inhibited the lipid droplet accumulation in a dose-dependent manner and dramatically attenuated the synthesis of adipogenic transcriptional factors, C/EBPa and PPARy. Activation of AMPKa, Erk and Akt during adipocytic differentiation was not inhibited by treatment with DhL. This data suggest that DhL has an important role in Rab5 dependent adipogenesis by regulating several transcriptional factors including PP ARy expression, which is known to play an essential role during fat formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ras is a proto-oncogene that codes for a small GTPase and is responsible for linking several extracellular signals to intracellular mechanisms that involve cell growth, differentiation and cell-programmed death in normal and diseased cells. In all these processes, Ras has been extensively investigated. However, the role of Ras GTPases is still poorly understood during the differentiation of 3T3-L1 preadipocytes. In this study I investigated the role of the H-Ras defective mutant, Ras:G12V on the differentiation of 3T3-L1 preadipocytes. Preadipocytes were differentiated in vitro to adipocytes (fat cells) by adding an induction medium containing several factors including glucose and insulin. The formation of fat cells evidenced by the visualization of lipid drops as well as by quantifying the accumulation of Oil red O into lipid drops. To examine the role of Ras:G12V mutant, several selective mutations were introduced in order to determine the signaling transduction pathways (i.e., PI3(K)kinase and MAP(K)Kinase) responsible for the Ras-dependent adipogenesis. Cells expressing Ras:G12V mutant stimulated 3T3-L1 preadipocyte differentiation without he need for induction media, suggesting that Ras activation is an essential factor required for 3T3-L1 preadipocyte differentiation. Introduction of a second mutation on Ras:G12V (i.e., Ras:G12V;E37G), which blocks the activation of the MAPKinase pathway, strongly inhibited the 3T3-L1 preadipocyte differentiation. It is also important to note Ras:G12V:E37G double mutant does not inhibit the activation of the PI3kinase pathway. Other Ras double mutants (Ras:G12V;S35T, and V12G;C40Y) showed a modest inhibition of the 3T3-L1 preadipocyte differentiation. Taken together, these observations indicate that Ras plays a selective role in 3T3-L1 preadipocyte differentiation. Thus, understanding which specific pathway Ras employs during preadipocyte differentiation could clarify some of the uncertainties surrounding fat production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rab family of proteins are low molecular weight GTPases that have the ability to switch between GTP- (active) and GDP- (inactive) bound form, and in that sense act as molecular switches. Through distinct localization on various vesicles and organelles and by cycling through GTP/GDP bound forms, Rabs are able to recruit and activate numerous effector proteins, both spatially and temporally, and hence behave as key regulators of trafficking in both endocytic and biosynhtetic pathways. The Rab5 protein has been shown to regulate transport from plasma membrane to the early endosome as well as activate signaling pathways from the early endosome. This dissertation focused on understanding Rab5 activation via endocytosis of receptor tyrosine kinases (RTKs). First, tyrosine kinase activity of RTKs was linked to endosome fusion by demonstrating that tyrosine kinase inhibitors block endosome fusion and activation of Rab5, and a constitutively active form of Rab5 is able to rescue endosome fusion. However, depending on how much ligand is available at the cell surface, the receptor-ligand complexes can be internalized via a number of distinct pathways. Similarly, Rab5 was activated in a ligand-dependent concentration dependent manner via clathrin- and caveolin-mediated pathways, as well as a pathway independent of both. However, overexpression Rabex-5, a nucleotide exchange factor for Rab5, is able to rescue activation even when all of the pathways of EGF-receptor internalization were blocked. Next, the three naturally occurring splice variants of Rabex-5 selectively activated Rab5. Lastly, Rabex-5 inhibits differentiation of 3T3-L1 and PC12 cells through 1) degradation of signaling endosome via Rab5-dependent fusion with the early endosome, 2) and inhibition of signaling cascade via ubiquitination of Ras through the ZnF domain at the N-terminus of Rabex-5. In conclusion, these data shed light on complexity of the endosomal trafficking system where tyrosine kinase activity of the receptor is able to affect endosome fusion; how different endocytic pathways affect activation of one of the key regulators of early endocytic events; and how selective activation of Rab5 via Rabex-5 can control adipogenesis and neurogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBP&agr;. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rab family of proteins are low molecular weight GTPases that have the ability to switch between GTP- (active) and GDP- (inactive) bound form, and in that sense act as molecular switches. Through distinct localization on various vesicles and organelles and by cycling through GTP/GDP bound forms, Rabs are able to recruit and activate numerous effector proteins, both spatially and temporally, and hence behave as key regulators of trafficking in both endocytic and biosynhtetic pathways. The Rab5 protein has been shown to regulate transport from plasma membrane to the early endosome as well as activate signaling pathways from the early endosome. This dissertation focused on understanding Rab5 activation via endocytosis of receptor tyrosine kinases (RTKs). First, tyrosine kinase activity of RTKs was linked to endosome fusion by demonstrating that tyrosine kinase inhibitors block endosome fusion and activation of Rab5, and a constitutively active form of Rab5 is able to rescue endosome fusion. However, depending on how much ligand is available at the cell surface, the receptor-ligand complexes can be internalized via a number of distinct pathways. Similarly, Rab5 was activated in a ligand-dependent concentration dependent manner via clathrin- and caveolin-mediated pathways, as well as a pathway independent of both. However, overexpression Rabex-5, a nucleotide exchange factor for Rab5, is able to rescue activation even when all of the pathways of EGF-receptor internalization were blocked. Next, the three naturally occurring splice variants of Rabex-5 selectively activated Rab5. Lastly, Rabex-5 inhibits differentiation of 3T3-L1 and PC12 cells through 1) degradation of signaling endosome via Rab5-dependent fusion with the early endosome, 2) and inhibition of signaling cascade via ubiquitination of Ras through the ZnF domain at the N-terminus of Rabex-5. In conclusion, these data shed light on complexity of the endosomal trafficking system where tyrosine kinase activity of the receptor is able to affect endosome fusion; how different endocytic pathways affect activation of one of the key regulators of early endocytic events; and how selective activation of Rab5 via Rabex-5 can control adipogenesis and neurogenesis.