8 resultados para Zero-inflated Count Data
em Digital Commons at Florida International University
Resumo:
Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^
Resumo:
This study examines the influence of acculturative stress on substance use and HIV risk behaviors among recent Latino immigrants. The central hypothesis of the study is that specific religious coping mechanisms influence the relationship that acculturative stress has on the substance use and HIV-risk behaviors of recent Latino immigrants. Within the Latino culture religiosity is a pervasive force, guiding attitudes, behaviors, and even social interactions. When controlling for education and socioeconomic status, Latinos have been found to use religious coping mechanisms more frequently than their Non-Latino White counterparts. In addition, less acculturated Latinos use religious coping strategies more frequently than those with higher levels of acculturation. Given its prominent role in Latino culture, it appears probable that this mechanism may prove to be influential during difficult life transitions, such as those experienced during the immigration process. This study examines the moderating influence of specific religious coping mechanisms on the relationship between acculturative stress and substance use/HIV risk behaviors of recent Latino immigrants. Analyses for the present study were conducted with wave 2 data from an ongoing longitudinal study investigating associations between pre-immigration factors and health behavior trajectories of recent Latino immigrants. Structural equation and zero-inflated Poisson modeling were implemented to test the specified models and examine the nature of the relationship among the variables. Moderating effects were found for negative religious coping. Higher levels of negative religious coping strengthened an inverse relationship between acculturative stress and substance use. Results also indicated direct relationships between religious coping mechanisms and substance use. External and positive religious coping were inversely related to substance use. Negative religious coping was positively related to substance use. This study aims to contribute knowledge of how religious coping influence's the adaptation process of recent Latino immigrants. Expanding scientific understanding as to the function and effect of these coping mechanisms could lead to enhanced culturally relevant approaches in service delivery among Latino populations. Furthermore this knowledge could inform research about specific cognitions and behaviors that need to be targeted in prevention and treatment programs with this population.
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, 1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) ≥7%), borderline (HbA1c 7-8.9%), and poor (HbA1c ≥9%) glycemic control and potentially new risk factors (e.g. work characteristics), and 2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and 3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.
Resumo:
This dissertation focused on the longitudinal analysis of business start-ups using three waves of data from the Kauffman Firm Survey. ^ The first essay used the data from years 2004-2008, and examined the simultaneous relationship between a firm's capital structure, human resource policies, and its impact on the level of innovation. The firm leverage was calculated as, debt divided by total financial resources. Index of employee well-being was determined by a set of nine dichotomous questions asked in the survey. A negative binomial fixed effects model was used to analyze the effect of employee well-being and leverage on the count data of patents and copyrights, which were used as a proxy for innovation. The paper demonstrated that employee well-being positively affects the firm's innovation, while a higher leverage ratio had a negative impact on the innovation. No significant relation was found between leverage and employee well-being.^ The second essay used the data from years 2004-2009, and inquired whether a higher entrepreneurial speed of learning is desirable, and whether there is a linkage between the speed of learning and growth rate of the firm. The change in the speed of learning was measured using a pooled OLS estimator in repeated cross-sections. There was evidence of a declining speed of learning over time, and it was concluded that a higher speed of learning is not necessarily a good thing, because speed of learning is contingent on the entrepreneur's initial knowledge, and the precision of the signals he receives from the market. Also, there was no reason to expect speed of learning to be related to the growth of the firm in one direction over another.^ The third essay used the data from years 2004-2010, and determined the timing of diversification activities by the business start-ups. It captured when a start-up diversified for the first time, and explored the association between an early diversification strategy adopted by a firm, and its survival rate. A semi-parametric Cox proportional hazard model was used to examine the survival pattern. The results demonstrated that firms diversifying at an early stage in their lives show a higher survival rate; however, this effect fades over time.^
Resumo:
This dissertation focused on the longitudinal analysis of business start-ups using three waves of data from the Kauffman Firm Survey. The first essay used the data from years 2004-2008, and examined the simultaneous relationship between a firm’s capital structure, human resource policies, and its impact on the level of innovation. The firm leverage was calculated as, debt divided by total financial resources. Index of employee well-being was determined by a set of nine dichotomous questions asked in the survey. A negative binomial fixed effects model was used to analyze the effect of employee well-being and leverage on the count data of patents and copyrights, which were used as a proxy for innovation. The paper demonstrated that employee well-being positively affects the firm's innovation, while a higher leverage ratio had a negative impact on the innovation. No significant relation was found between leverage and employee well-being. The second essay used the data from years 2004-2009, and inquired whether a higher entrepreneurial speed of learning is desirable, and whether there is a linkage between the speed of learning and growth rate of the firm. The change in the speed of learning was measured using a pooled OLS estimator in repeated cross-sections. There was evidence of a declining speed of learning over time, and it was concluded that a higher speed of learning is not necessarily a good thing, because speed of learning is contingent on the entrepreneur's initial knowledge, and the precision of the signals he receives from the market. Also, there was no reason to expect speed of learning to be related to the growth of the firm in one direction over another. The third essay used the data from years 2004-2010, and determined the timing of diversification activities by the business start-ups. It captured when a start-up diversified for the first time, and explored the association between an early diversification strategy adopted by a firm, and its survival rate. A semi-parametric Cox proportional hazard model was used to examine the survival pattern. The results demonstrated that firms diversifying at an early stage in their lives show a higher survival rate; however, this effect fades over time.
Resumo:
This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.