13 resultados para XSLT transformation

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of arsenic transport and transformation in soil environment requires understanding the transport mechanisms and proper estimation of arsenic partitioning tong all three phases in soil/aquifer systems: mobile colloids, mobile soil solution, and immobile soil solids. The primary purpose of this research is to study natural dissolved organic matter (DOM)/colloid-facilitated transport of arsenic and understand the role of soil derived carriers in the transport and transformation of both inorganic and organoarsenicals in soils. ^ DOM/colloid facilitated arsenic transport and transformation in porous soil media were investigated using a set of experimental approaches including batch experiment, equilibrium membrane dialysis experiment and column experiment. Soil batch experiment was applied to investigate arsenic adsorption on a variety of soils with different characteristics; Equilibrium membrane dialysis was employed to determine the 'free' and 'colloid-bound/complexed' arsenic in water extracts of chosen soils; Column experiments were also set up in the laboratory to simulate arsenic transport and transformation through golf course soils in the presence and absence of soil-derived dissolved substances. ^ The experimental results revealed that organic matter amendments effectively reduced soil arsenic adsorption. The majority of arsenic present in the soil extracts was associated with small substances of molecular weight (MW) between 500 and 3,500 Da, Only a small fraction of arsenic was associated with higher MW substances (MW > 3,500 Da), which was operationally defined as colloidal part in this study. The association of arsenic and DOM in the soil extracts strongly affected arsenic bioavailability, arsenic transport and transformation in soils. The results of column experiments revealed arsenic complicated behavior with various processes occurring in soils studied, including: soil arsenic' adsorption, facilitated arsenic transportation by dissolved substances presented in soil extracts and microorganisms involved arsenic species transformation. ^ Soil organic matter amendments effectively reduce soil arsenic adsorption capability either by scavenging 'soil arsenic adsorption sites or by interactions between arsenic species and dissolved organic chemicals in soil solution. Close attention must be paid for facilitated arsenic transport by dissolved substances presented in soil solution and microorganisms involved arsenic species transformation in arsenic-contaminated soils.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new method was developed based on aqueous phenylation, purge-and-trap preconcentration, gas chromatography (GC) separation, and detection by atomic fluorescence spectrometry (AFS) or inductively coupled plasma mass spectrometry (ICPMS). This technique is suitable for simultaneous determination of trace or ultratrace levels of CH3Hg+ and CH3CH2Hg+ in environmental samples. Method detection limits were 0.03 ng/L for both CH3Hg+ and CH3CH2Hg+ when AFS was used as the detector and 0.02 and 0.01 ng/L for CH3Hg+ and CH 3CH2Hg+ with ICPMS, respectively. The new method has the additional benefits of being free from interference by Cl - and dissolved organic matter. Using the method developed, both CH3Hg+ and CH3CH2Hg+ were detected in a number of soil and sediment samples collected from the Florida Everglades. The identity of CH3CH2Hg+ was verified by purge-and-trap-GC/MS analysis. The possibility of analytical artifact was excluded by using stable isotope tracer technique in combination with ICPMS detection. CH3CH 2Hg+ in the soil samples analyzed was at ng/g level, similar to that of CH3Hg+. The prevalence of CH 3CH2Hg+ in the soil of the Florida Everglades suggests that ethylation plays an important role in the geochemistry of Hg in this wetland. Soil incubation and sawgrass culture experiments using stable isotope tracers revealed that CH3Hg+ was mainly produced by microbial activities under anaerobic conditions, agreeing well with the general understanding of methylation mechanisms of Hg in the environment. Ethylation of Hg was not confirmed in these experiments, indicating that ethylation of Hg most probably follows different mechanisms in comparison to methylation. Further experiments revealed that trace levels of ethyllead species were able to transfer ethyl group to Hg in both deionized water and freshwater matrixes, producing CH3CH2Hg+. This might partially account for the occurrence of CH3CH2Hg+ in the relatively pristine environment of the Florida Everglades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased occurrence of cyanobacteria (blue-green algae) blooms and the production of associated cyanotoxins have presented a threat to drinking water sources. Among the most common types of cyanotoxins found in potable water are microcystins (MCs), a family of cyclic heptapeptides containing substrates. MCs are strongly hepatotoxic and known to initiate tumor promoting activity. The presence of sub-lethal doses of MCs in drinking water is implicated as one of the key risk factors for an unusually high occurrence of primary liver cancer. ^ A variety of traditional water treatment methods have been attempted for the removal of cyanotoxins, but with limited success. Advanced Oxidation Technologies (AOTs) are attractive alternatives to traditional water treatments. We have demonstrated ultrasonic irradiation and UV/H2O2 lead to the degradation of cyanotoxins in drinking water. These studies demonstrate AOTs can effectively degrade MCs and their associated toxicity is dramatically reduced. We have conducted detailed studies of different degradation pathways of MCs and conclude that the hydroxyl radical is responsible for a significant fraction of the observed degradation. Results indicate preliminary products of the sonolysis of MCs are due to the hydroxyl radical attack on the benzene ring and substitution and cleavage of the diene of the Adda peptide residue. AOTs are attractive methods for treatment of cyanotoxins in potable water supplies. ^ The photochemical transformation of MCs is important in the environmental degradation of MCs. Previous studies implicated singlet oxygen as a primary oxidant in the photochemical transformation of MCs. Our results indicate that singlet oxygen predominantly leads to degradation of the phycocyanin, pigments of blue green algae, hence reducing the degradation of MCs. The predominant process involves isomerization of the diene (6E to 6Z) in the Adda side chain via photosensitized isomerization involving the photoexcited phycocyanin. Our results indicate that photosensitized processes play a key role in the environmental fate and elimination of MCs in the natural waters. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In communities throughout the developing world, faith-based organizations (FBOs) focus on goals such as eradicating poverty, bolstering local economies, and fostering community development, while premising their activities and interaction with local communities on theological and religious understandings. Due to their pervasive interaction with participants, the religious ideologies of these FBOs impact the religious, economic, and social realities of communities. This study investigates the relationship between the international FBO, World Vision International (WVI), and changes to religious, economic, and social ideologies and practices in Andean indigenous communities in southern Peruvian. This study aims to contribute to the greater knowledge and understanding of (1) institutionalized development strategies, (2) faith-based development, and (3) how institutionalized development interacts with processes of socio-cultural change. Based on fifteen months of field research, this study involved qualitative and quantitative methods of participant-observation, interviews, surveys, and document analysis. Data were primarily collected from households from a sample of eight communities in the Pitumarca and Combapata districts, department of Canchis, province of Cusco, Peru where two WVI Area Development Programs were operating. Research findings reveal that there is a relationship between WVI’s intervention and some changes to religious, economic, and social structure (values, ideologies, and norms) and practices, demonstrating that structure and practices change when social systems are altered by new social actors. Findings also revealed that the impacts of WVI’s intervention greatly increased over the course of several years, demonstrating that changes in structure and practice occur gradually and need a period of time to take root. Finally, results showed that the impacts of WVI’s intervention were primarily limited to those most closely involved with the organization, revealing that the ability of one social actor to incite changes in the structure and practice of another actor is associated with the intensity of the relationship between the social actors. The findings of this study should be useful in ascertaining deductions and strengthening understandings of how faith-based development organizations impact aspects of religious, economic, and social life in the areas where they work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the Everglades underwent a metaphorical and ecological transition from impenetrable swamp to endangered wetland. At the heart of this transformation lies the Florida sugar industry, which by the 1990s was at the center of the political storm over the multi-billion dollar ecological “restoration” of the Everglades. Raising Cane in the ’Glades is the first study to situate the environmental transformation of the Everglades within the economic and historical geography of global sugar production and trade. Using, among other sources, interviews, government and corporate documents, and recently declassified U.S. State Department memoranda, Gail M. Hollander demonstrates that the development of Florida’s sugar region was the outcome of pitched battles reaching the highest political offices in the U.S. and in countries around the world, especially Cuba—which emerges in her narrative as a model, a competitor, and the regional “other” to Florida’s “self.” Spanning the period from the age of empire to the era of globalization, the book shows how the “sugar question”—a label nineteenth-century economists coined for intense international debates on sugar production and trade—emerges repeatedly in new guises. Hollander uses the sugar question as a thread to stitch together past and present, local and global, in explaining Everglades transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing urgency to enhance the sustainability of existing and emerging cities. The science of ecology, especially as it interacts with disciplines in the social sciences and urban design, has contributions to make to the sustainable transformation of urban systems. Not all possible urban transformations may lead toward sustainability. Ecological science helps identify components of resilience that can favor transformations that are more sustainable. To summarize the dynamics and choices involved in sustainable transformations, a “metacity” framework is presented, embracing ecological processes in cities as complementary to those involving society, power, and economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper chronicles White South African journalist Donald Woods’ life (1933-2001) as he transformed from holding racist beliefs that Blacks were “people who were there to be your servants,” to becoming one of his country’s leading anti-apartheid activists. Adult learning and development via perspective transformation theory are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gnostic Mass of the Ecclesia Gnostica Catholica (E.G.C.) suggests a heterosexual gender binary in which the female Priestess seated on the altar as the sexual and fertile image of the divine feminine is directed by the male Priest’s activity, desire and speech. The apparent contradiction between the empowered individual and the polarized gender role was examined by comparing the ritual symbolism of the feminine with the interpretations of four Priestesses and three Priests (three pairs plus one). Findings suggest that the Priestess’ role in the Gnostic Mass is associated with channeling, receptivity, womb, cup, and fertility, while the Priest’s role is associated with enthusiasm, activity, phallus, lance, and virility. Despite this strong gender duality, the Priestesses asserted that their role was personally and spiritually empowering, and they maintained heterosexual and polarized gendered roles are necessary in a transformative ritual which ultimately reveals the godlike unified individual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget. In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.