11 resultados para World Modeling

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine if the perceived leadership styles of the leaders at New World School of the Arts were different according to their roles in the organization. The study focused on the top leaders of the organization: the Provost who heads the college program, and the Principal who heads the high school program.^ The Leadership Practices Inventory (LPI) Self and Observer developed by Kouzes and Posner (1990) was used to examine and compare the perceived differences between the leaders and the programs. The LPI measures five practices of exemplary leadership. The LPI Self and Observer was administered to the leaders, administrative subordinates, and faculty. In addition to the LPI a Demographic Inventory was used to collect data about the respondents.^ This study used a causal-comparative design to determine if differences existed between the leaders at NWSA as perceived by the leaders themselves and their respective administrative subordinates and faculty. T tests were conducted on the mean differences between the five leadership practices measured by the LPI. All tests were declared significant if exceeding the 5% level $(p={<}.05).$^ Significant differences were found within the college program across all five practice areas. To a lesser degree, significant differences were found within the high school in three practice areas: Inspiring, Enabling, and Modeling. Three significant differences were found between the college and high school in two practice areas, Enabling and Encouraging.^ There is little consensus of opinion within the college regarding the operative leadership style. Within the high school there is substantial similarity of perception regarding the operative leadership style. There is substantial similarity of perception between the programs regarding the operative leadership style. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concurrent software executes multiple threads or processes to achieve high performance. However, concurrency results in a huge number of different system behaviors that are difficult to test and verify. The aim of this dissertation is to develop new methods and tools for modeling and analyzing concurrent software systems at design and code levels. This dissertation consists of several related results. First, a formal model of Mondex, an electronic purse system, is built using Petri nets from user requirements, which is formally verified using model checking. Second, Petri nets models are automatically mined from the event traces generated from scientific workflows. Third, partial order models are automatically extracted from some instrumented concurrent program execution, and potential atomicity violation bugs are automatically verified based on the partial order models using model checking. Our formal specification and verification of Mondex have contributed to the world wide effort in developing a verified software repository. Our method to mine Petri net models automatically from provenance offers a new approach to build scientific workflows. Our dynamic prediction tool, named McPatom, can predict several known bugs in real world systems including one that evades several other existing tools. McPatom is efficient and scalable as it takes advantage of the nature of atomicity violations and considers only a pair of threads and accesses to a single shared variable at one time. However, predictive tools need to consider the tradeoffs between precision and coverage. Based on McPatom, this dissertation presents two methods for improving the coverage and precision of atomicity violation predictions: 1) a post-prediction analysis method to increase coverage while ensuring precision; 2) a follow-up replaying method to further increase coverage. Both methods are implemented in a completely automatic tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chihuahua desert is one of the most biologically diverse ecosystems in the world, but suffers serious degradation because of changes in fire regimes resulting in large catastrophic fires. My study was conducted in the Sierra La Mojonera (SLM) natural protected area in Mexico. The purpose of this study was to implement the use of FARSITE fire modeling as a fire management tool to develop an integrated fire management plan at SLM. Firebreaks proved to detain 100% of wildfire outbreaks. The rosetophilous scrub experienced the fastest rate of fire spread and lowland creosote bush scrub experienced the slowest rate of fire spread. March experienced the fastest rate of fire spread, while September experienced the slowest rate of fire spread. The results of my study provide a tool for wildfire management through the use geospatial technologies and, in particular, FARSITE fire modeling in SLM and Mexico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concurrent software executes multiple threads or processes to achieve high performance. However, concurrency results in a huge number of different system behaviors that are difficult to test and verify. The aim of this dissertation is to develop new methods and tools for modeling and analyzing concurrent software systems at design and code levels. This dissertation consists of several related results. First, a formal model of Mondex, an electronic purse system, is built using Petri nets from user requirements, which is formally verified using model checking. Second, Petri nets models are automatically mined from the event traces generated from scientific workflows. Third, partial order models are automatically extracted from some instrumented concurrent program execution, and potential atomicity violation bugs are automatically verified based on the partial order models using model checking. Our formal specification and verification of Mondex have contributed to the world wide effort in developing a verified software repository. Our method to mine Petri net models automatically from provenance offers a new approach to build scientific workflows. Our dynamic prediction tool, named McPatom, can predict several known bugs in real world systems including one that evades several other existing tools. McPatom is efficient and scalable as it takes advantage of the nature of atomicity violations and considers only a pair of threads and accesses to a single shared variable at one time. However, predictive tools need to consider the tradeoffs between precision and coverage. Based on McPatom, this dissertation presents two methods for improving the coverage and precision of atomicity violation predictions: 1) a post-prediction analysis method to increase coverage while ensuring precision; 2) a follow-up replaying method to further increase coverage. Both methods are implemented in a completely automatic tool.