4 resultados para Winds

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before dawn on August 24, 1992, Hurricane Andrew smashed into south Florida, particularly southern Dade County, and soon become the costliest natural disaster in U.S. history. Andrew's impacts quickly overwhelmed local and state emergency response capabilities and eventually required major federal assistance, including regular military units. While the social and economic impacts of Hurricane Andrew are relatively well researched, much less attention has been given to its possible political effects. ^ Focusing on incumbent officeholders at three levels (municipal, state legislative, and statewide) who stood for reelection after Hurricane Andrew, this study seeks to determine whether they experienced any political effects from Andrew. That is, this study explores the possible interaction between the famous “incumbency advantage” and an “extreme event,” in this case a natural disaster. The specific foci were (1) campaigns and campaigning (a research process that included 43 personal interviews), and (2) election results before and after the event. ^ Given well-documented response problems, the working hypothesis was that incumbents experienced largely negative political fallout from the disaster. The null hypothesis was that incumbents saw no net political effects, but the reverse hypothesis was also considered: incumbents benefited politically from the event. ^ In the end, this study found that although the election process was physically disrupted, especially in south Dade County, the disaster largely reinforced the incumbency advantage. More specifically, the aftermath of Hurricane Andrew allowed most incumbent officeholders to (1) enhance constituency service, (2) associate themselves with the flow of external assistance, (3) achieve major personal visibility and media coverage, and yet (4) appear non-political or at least above normal politics. Overall, this combination allowed incumbents to very effectively “campaign without campaigning,” a point borne out by post-Andrew election results. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.