6 resultados para Weak Alignment
em Digital Commons at Florida International University
Resumo:
The current study examined the influence of weak parental and peer attachment on academic achievement among late adolescent college students. In previous research, weak attachment to parents and/or peers had been found to have an adverse influence on the academic success of college students. This study also examined the potential moderating influence of several cognitive and non-cognitive psychosocial variables that might act as protective factors for weakly attached students and, therefore, enhance their academic competence. Data regarding attachment, cognitive variables, and non-cognitive variables were collected using several self-report measures. The multi-ethnic sample of students in this study (n = 357) attended an urban university. Students were classified into one of nine parental-peer attachment groups (e.g., Low-Low, Medium-Medium, High-High). Attachment groups were compared in terms of cognitive and non-cognitive variables. Contrary to the hypothesis, no statistically significant academic achievement differences were revealed for the group of college students who perceived themselves to be weakly attached to both parents and peers. Analysis of variance (ANOVA) identified the High-High group to be significantly different in terms of academic outcome variables from the other eight groups while the Low-Low group had significantly lower levels of non-cognitive variables than several of the other attachment groups. Hierarchical multiple regression analyses revealed that cognitive variables accounted for significant amounts of variance in academic outcomes and that several non-cognitive variables were significant predictors of scholastic competence. Correlational analyses revealed that parental and peer attachment were positively correlated with several cognitive and non-cognitive variables but neither was significantly correlated with self-reported college GPA. In general, the findings do not provide support for a main effect of weak attachment to parents and peers upon academic adversity among college students. Results suggest that both cognitive variables and non-cognitive variables may moderate academic risk due to weak attachment to parents and peers. Descriptive within group analyses of the Low-Low group revealed a heterogeneous group of students with regards to academic outcomes and scores on non-cognitive measures. Gender and ethnic differences were found for attachment status but not for cognitive or non-cognitive variables. Implications for interventions and suggestions for future research are presented. ^
Resumo:
We have obtained total and differential cross sections for the strangeness changing charged current weak reaction ν L + p → Λ(Σ0) + L+ using standard dipole form factors, where L stands for an electron, muon, or tau lepton, and L + stands for an positron, anti-muon or anti-tau lepton. We calculated these reactions from near threshold few hundred MeV to 8 GeV of incoming neutrino energy and obtained the contributions of the various form factors to the total and differential cross sections. We did this in support of possible experiments which might be carried out by the MINERνA collaboration at Fermilab. The calculation is phenomenologically based and makes use of SU(3) relations to obtain the standard vector current form factors and data from Λ beta decay to obtain the axial current form factor. We also made estimates for the contributions of the pseudoscalar form factor and for the F E and FS form factors to the total and differential cross sections. We discuss our results and consider under what circumstances we might extract the various form factors. In particular we wish to test the SU(3) assumptions made in determining all the form factors over a range of q2 values. Recently new form factors were obtained from recoil proton measurements in electron-proton electromagnetic scattering at Jefferson Lab. We thus calculated the contributions of the individual form factors to the total and differential cross sections for this new set of form factors. We found that the differential and total cross sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross sections change substantially for Σ 0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERνA Collaboration. We also undertook the calculation for the inverse reaction e − + p → Λ + νe for a polarized outgoing Λ which might be performed at Jefferson Lab, and provided additional analysis of the contributions of the individual form factors to the differential cross sections for this case. ^
Resumo:
The purpose of this study was to aid in understanding the relationship between current Reading report card grading practices and standards-based state standardized testing results in Reading and factors associated with the alignment of this relationship. Report card and Florida Comprehensive Assessment Test (FLAT) data for 2004 were collected for 1064 third grade students in nine schools of one feeder pattern in Florida's Miami-Dade County Public Schools. A Third Grade Teacher Questionnaire was administered to 48 Reading teachers. The questionnaire contained items relating to teachers' education, teaching experience, grading practices, and beliefs about the FCAT, instructional Reading activities, methods, and materials. ^ Findings of this study support a strong relationship between report card grades and FCAT Reading achievement levels. However, individual school correlational analysis showed significant differences among schools' alignment measures. Higher teacher alignment between grades and FCAT levels was associated with teachers spending more time on individualized methods of Reading instruction and to teachers feeling there was not enough time to teach and help individual students. Lower teacher alignment of grades and achievement levels was associated with teachers taking homework into account in the final Reading grade. Teacher alignment of grades and achievement levels was not associated with teacher beliefs concerning the FCAT, instructional activities in Reading and Language Arts, the Reading program used, the model of delivery of the Reading program, instruction or type of instructional planning done by the teachers. ^ This study highlights the need for further investigations related to determining additional teacher factors that may affect the alignment relationship between report card grades and standards-based state standardized testing results. ^
Resumo:
We calculate the differential cross section for weak electron scattering reaction, e + 3He-' 3H + ve, for energies from 100 MeV to 6 GeV as a function of outgoing nucleus angle from 0 to n/2 radians. We find that the differential cross section at low [q2] increases with electron energy from 0.1 GeV to 6.0 GeV, such that the peak value at 6.0 GeV is approximately 3.2 x 10-40 cm 2 / ster, a factor of 10 larger than the peak value at 0.1 GeV. We also find that the width of the peak falls very rapidly with increasing electron energy. At high [q2] we find that the differential cross section falls by approximately three orders of magnitude making experimental observation at this time unlikely. The contributions of the individual form factors are obtained for electron energies of 0.5GeV and 2.0 GeV. It is found that at low [q2] the form factors, FA(q2) and Fv(q2), make contributions of similar size to the differential cross section and might be simultaneously determined , but for the case of FM(q2) we find that the contribution is too small to determine. It is also found that at large [q2] values, the contribution of FM(q2) is substantially enhanced , but that the cross section is probably too small to enable a direct determination of FM(q2).
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm.
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. ^ Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. ^ Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm. ^