6 resultados para Wavelet Analysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents a unique research opportunity by using recordings which provide electrocardiogram (ECG) plus a reference breathing signal (RBS). ECG derived breathing (EDR) is measured and correlated against RBS. Standard deviations of multiresolution wavelet analysis coefficients (SDMW) are obtained from heart rate and classified using RBS. Prior works by others used select patients for sleep apnea scoring with EDR but no RBS. Another prior work classified select heart disease patients with SDMW but no RBS. This study used randomly chosen sleep disorder patient recordings; central and obstructive apneas, with and without heart disease.^ Implementation required creating an application because existing systems were limited in power and scope. A review survey was created to choose a development environment. The survey is presented as a learning tool and teaching resource. Development objectives were rapid development using limited resources (manpower and money). Open Source resources were used exclusively for implementation. ^ Results show: (1) Three groups of patients exist in the study. Grouping RBS correlations shows a response with either ECG interval or amplitude variation. A third group exists where neither ECG intervals nor amplitude variation correlate with breathing. (2) Previous work done by other groups analyzed SDMW. Similar results were found in this study but some subjects had higher SDMW, attributed to a large number of apneas, arousals and/or disconnects. SDMW does not need RBS to show apneic conditions exist within ECG recordings. (3) Results in this study support the assertion that autonomic nervous system variation was measured with SDMW. Measurements using RBS are not corrupted due to breathing even though respiration overlaps the same frequency band.^ Overall, this work becomes an Open Source resource which can be reused, modified and/or expanded. It might fast track additional research. In the future the system could also be used for public domain data. Prerecorded data exist in similar formats in public databases which could provide additional research opportunities. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In finance literature many economic theories and models have been proposed to explain and estimate the relationship between risk and return. Assuming risk averseness and rational behavior on part of the investor, the models are developed which are supposed to help in forming efficient portfolios that either maximize (minimize) the expected rate of return (risk) for a given level of risk (rates of return). One of the most used models to form these efficient portfolios is the Sharpe's Capital Asset Pricing Model (CAPM). In the development of this model it is assumed that the investors have homogeneous expectations about the future probability distribution of the rates of return. That is, every investor assumes the same values of the parameters of the probability distribution. Likewise financial volatility homogeneity is commonly assumed, where volatility is taken as investment risk which is usually measured by the variance of the rates of return. Typically the square root of the variance is used to define financial volatility, furthermore it is also often assumed that the data generating process is made of independent and identically distributed random variables. This again implies that financial volatility is measured from homogeneous time series with stationary parameters. In this dissertation, we investigate the assumptions of homogeneity of market agents and provide evidence for the case of heterogeneity in market participants' information, objectives, and expectations about the parameters of the probability distribution of prices as given by the differences in the empirical distributions corresponding to different time scales, which in this study are associated with different classes of investors, as well as demonstrate that statistical properties of the underlying data generating processes including the volatility in the rates of return are quite heterogeneous. In other words, we provide empirical evidence against the traditional views about homogeneity using non-parametric wavelet analysis on trading data, The results show heterogeneity of financial volatility at different time scales, and time-scale is one of the most important aspects in which trading behavior differs. In fact we conclude that heterogeneity as posited by the Heterogeneous Markets Hypothesis is the norm and not the exception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. ^ Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^