4 resultados para Water resources system analysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small errors proved catastrophic. Our purpose to remark that a very small cause which escapes our notice determined a considerable effect that we cannot fail to see, and then we say that the effect is due to chance. Small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. When dealing with any kind of electrical device specification, it is important to note that there exists a pair of test conditions that define a test: the forcing function and the limit. Forcing functions define the external operating constraints placed upon the device tested. The actual test defines how well the device responds to these constraints. Forcing inputs to threshold for example, represents the most difficult testing because this put those inputs as close as possible to the actual switching critical points and guarantees that the device will meet the Input-Output specifications. ^ Prediction becomes impossible by classical analytical analysis bounded by Newton and Euclides. We have found that non linear dynamics characteristics is the natural state of being in all circuits and devices. Opportunities exist for effective error detection in a nonlinear dynamics and chaos environment. ^ Nowadays there are a set of linear limits established around every aspect of a digital or analog circuits out of which devices are consider bad after failing the test. Deterministic chaos circuit is a fact not a possibility as it has been revived by our Ph.D. research. In practice for linear standard informational methodologies, this chaotic data product is usually undesirable and we are educated to be interested in obtaining a more regular stream of output data. ^ This Ph.D. research explored the possibilities of taking the foundation of a very well known simulation and modeling methodology, introducing nonlinear dynamics and chaos precepts, to produce a new error detector instrument able to put together streams of data scattered in space and time. Therefore, mastering deterministic chaos and changing the bad reputation of chaotic data as a potential risk for practical system status determination. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is part of continued efforts to correlate the hydrology of East Fork Poplar Creek (EFPC) and Bear Creek (BC) with the long term distribution of mercury within the overland, subsurface, and river sub-domains. The main objective of this study was to add a sedimentation module (ECO Lab) capable of simulating the reactive transport mercury exchange mechanisms within sediments and porewater throughout the watershed. The enhanced model was then applied to a Total Maximum Daily Load (TMDL) mercury analysis for EFPC. That application used historical precipitation, groundwater levels, river discharges, and mercury concentrations data that were retrieved from government databases and input to the model. The model was executed to reduce computational time, predict flow discharges, total mercury concentration, flow duration and mercury mass rate curves at key monitoring stations under various hydrological and environmental conditions and scenarios. The computational results provided insight on the relationship between discharges and mercury mass rate curves at various stations throughout EFPC, which is important to best understand and support the management mercury contamination and remediation efforts within EFPC.