3 resultados para Washington State Liquor Control Board.
em Digital Commons at Florida International University
Resumo:
The Front Office Manager: Key to Hotel Communications is a written study by Denney G. Rutherford, Department of Hotel and Restaurant Administration, College of Business and Economics at Washington State University. In it he initially observes, “Since the front office manager is usually viewed as the key to the efficient and orderly operation of a hotel, the author has researched the job and activities of this individual in an attempt to provide data about an area which he says was "intuitively known" but never "empirically explored." “Current literature implies that the activities of the front office are so important to the daily operations of the hotel that it occupies a preeminent position among other departments,” Rutherford says. He also references, Gray and Liguori, who describe the front office as: “the nerve center of the hote1,” echoing an early work by Heldenbrand indicating that it “becomes a sort of listening post for management.” The quotes are cited. The primary stage of the article relies on a seven-page, two-part questionnaire, which was used to collect data regarding the FOM – front office manager - position. Even though the position is considered a crucial one, it seems there is a significant lack of pragmatic data regarding it. Rutherford graphs the studies. Good communication skills are imperative. “Other recent research has suggested that the skills of effective communication are among the most vital a manager at any level can bring to his/her endeavors in the service industries,” Rutherford notes. He provides a detailed – front office communications model – to illustrate the functions. In, Table 4, for example - Office Manager as Facilitator – Rutherford provides Likert Rating Scale values for a comprehensive list of front office tasks. Rutherford informs you that the communicative skills of a front office manager flow across the board, encompassing variables from guest relation exchanges to all the disparate components of employee relations. Not withstanding and compared to technical knowledge, such as computer and fiscal skills, Rutherford suggests: “The most powerful message derived from analysis of the data on the FOM's job is that communication in its various forms is clearly central to the successful mission of the front office.”
Resumo:
This thesis describes the development of an adaptive control algorithm for Computerized Numerical Control (CNC) machines implemented in a multi-axis motion control board based on the TMS320C31 DSP chip. The adaptive process involves two stages: Plant Modeling and Inverse Control Application. The first stage builds a non-recursive model of the CNC system (plant) using the Least-Mean-Square (LMS) algorithm. The second stage consists of the definition of a recursive structure (the controller) that implements an inverse model of the plant by using the coefficients of the model in an algorithm called Forward-Time Calculation (FTC). In this way, when the inverse controller is implemented in series with the plant, it will pre-compensate for the modification that the original plant introduces in the input signal. The performance of this solution was verified at three different levels: Software simulation, implementation in a set of isolated motor-encoder pairs and implementation in a real CNC machine. The use of the adaptive inverse controller effectively improved the step response of the system in all three levels. In the simulation, an ideal response was obtained. In the motor-encoder test, the rise time was reduced by as much as 80%, without overshoot, in some cases. Even with the larger mass of the actual CNC machine, decrease of the rise time and elimination of the overshoot were obtained in most cases. These results lead to the conclusion that the adaptive inverse controller is a viable approach to position control in CNC machinery.
Resumo:
During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.