5 resultados para WAVELENGTH RANGE

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this research project was to contribute to the understanding of chloroplast movement in plants. Chloroplast movement in leaves from twenty tropical plant species ranging from cycads to monocots and varying in shade tolerance was examined by measuring changes in transmittance following 30 min. of exposure to white light at 1000 μmol m−2 s −1 in the wavelength range of 400–700 nm (photosynthetically active radiation, PAR). Leaf anatomical characteristics were also measured. Eighteen species increased significantly in transmittance (Δ T) at this level of illumination. ^ Chloroplast movement was significantly correlated with palisade cell width suggesting that cell dimensions are a significant constraint on chloroplast movement in the species examined. In addition, Δ T values were strongly correlated with values of an index of shade tolerance. ^ To further examine the relationship between palisade width and chloroplast movement, additional studies were conducted with a tropical aroid vine, Scindapsus aureus Schott. Scindapsus plants were grown under three different light treatments: 63% (control), 9.0% and 2.7% of full sunlight. Under these growing conditions plants produced markedly different palisade cell widths. Palisade cell width was again found to be correlated with transmittance changes. In addition, the observed increases in transmittance following exposure to the above illumination condition were correlated with absorbance of PAR. Fluorescence studies demonstrated that chloroplast movement helps protect Scindapsus aureus from the effects of photoinhibition when it is exposed to light at a higher intensity relative to the intensity of its normal environment. Ratios of variable fluorescence (Fv) to maximal fluorescence (Fm ) were higher in plants exposed to high light when chloroplasts moved than in plants where chloroplasts did not. ^ To further explore the role of chloroplast movement, studies were conducted to determine if transmittance changes could be induced in ten xerophytes at (1000 μmol m−2 s−1), as well as two stronger light intensities (1800 μmol m−2 s−1 and 2200 μmol m−2 s −1). Transmittance changes in the ten xerophytes were dependent upon the illumination intensity; nine out of the ten xerophytes changed in transmittance at 1800 μmol m−2 s−1. For the other two intensity levels, only three out of the ten xerophytes tested exhibited transmittance changes, and for two species, a negative Δ T value was obtained at 1000 μmol m−2 s−1 . No relationship was found between cell dimensions and chloroplast movement, although all species had large enough chlorenchyma cells to allow such movements. ^ The results of the study clearly show that in non-xerophytes, palisade cell anatomy is a strong constraint on chloroplast movement. This relationship may be the basis for the relationship between chloroplast movement and shade tolerance. Although absorbance changes are relatively small, chloroplast movement was clearly shown to reduce photoinhibition. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. ^ However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. ^ In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. ^ The main device is a micro-ring resonator filter of 10 μm of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 × 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. ^ In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. ^ Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.