12 resultados para Volatility of volatility
em Digital Commons at Florida International University
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.
Resumo:
In their dialogue entitled - The Food Service Industry Environment: Market Volatility Analysis - by Alex F. De Noble, Assistant Professor of Management, San Diego State University and Michael D. Olsen, Associate Professor and Director, Division of Hotel, Restaurant & Institutional Management at Virginia Polytechnic Institute and State University, De Noble and Olson preface the discussion by saying: “Hospitality executives, as a whole, do not believe they exist in a volatile environment and spend little time or effort in assessing how current and future activity in the environment will affect their success or failure. The authors highlight potential differences that may exist between executives' perceptions and objective indicators of environmental volatility within the hospitality industry and suggest that executives change these perceptions by incorporating the assumption of a much more dynamic environment into their future strategic planning efforts. Objective, empirical evidence of the dynamic nature of the hospitality environment is presented and compared to several studies pertaining to environmental perceptions of the industry.” That weighty thesis statement presumes that hospitality executives/managers do not fully comprehend the environment in which they operate. The authors provide a contrast, which conventional wisdom would seem to support and satisfy. “Broadly speaking, the operating environment of an organization is represented by its task domain,” say the authors. “This task domain consists of such elements as a firm's customers, suppliers, competitors, and regulatory groups.” These are dynamic actors and the underpinnings of change, say the authors by way of citation. “The most difficult aspect for management in this regard tends to be the development of a proper definition of the environment of their particular firm. Being able to precisely define who the customers, competitors, suppliers, and regulatory groups are within the environment of the firm is no easy task, yet is imperative if proper planning is to occur,” De Noble and Olson further contribute to support their thesis statement. The article is bloated, and that’s not necessarily a bad thing, with tables both survey and empirically driven, to illustrate market volatility. One such table is the Bates and Eldredge outline; Table-6 in the article. “This comprehensive outline…should prove to be useful to most executives in expanding their perception of the environment of their firm,” say De Noble and Olson. “It is, however, only a suggested outline,” they advise. “…risk should be incorporated into every investment decision, especially in a volatile environment,” say the authors. De Noble and Olson close with an intriguing formula to gauge volatility in an environment.
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.
Resumo:
This dissertation examines one category of international capital flows, private portfolio investments (private refers to the source of capital). There is an overall lack of a coherent and consistent definition of foreign portfolio investment. We clarify these definitional issues.^ Two main questions that pertain to private foreign portfolio investments (FPI) are explored. The first problem is the phenomenon of home preference, often referred to as home bias. Related to this are the observed cross-investment flows between countries that seem to contradict the textbook rendition of private FPI. A description of the theories purporting to resolve the home preference puzzle (and the cross-investment one) are summarized and evaluated. Most of this literature considers investors from major developed countries. I consider--as well--whether investors in less developed countries have home preference.^ The dissertation shows that home preference is indeed pervasive and profound across countries, in both developed and emerging markets. For the U.S., I examine home bias in both equity and bond holdings as well. I find that home bias is greater when we look at equity and bond holdings than equity holdings solely.^ In this dissertation a model is developed to explain home bias. This model is original and fills a gap in the literature as there have been no satisfactory models that handle at the same time both home preference and cross-border holdings in the context of information asymmetries. This model reflects what we see in the data and permits us to reach certain results by the use of comparative statics methods. The model suggests, counter-intuitively, that as the rate of return in a country relative to the world rate of return increases, home preference decreases. In the context of our relatively simple model we ascribe this result to the higher variance of the now higher return for home assets. We also find, this time as intended, that as risk aversion increases, investors diversify further so that home preference decreases.^ The second question that the dissertation deals with is the volatility of private foreign portfolio investment. Countries that are recipients of these flows have been wary of such flows because of their perceived volatility. Often the contrast is made with the perceived absence of volatility in foreign direct investment flows. I analyze the validity of these concerns using first net flow data and then gross flow data. The results show that FPI is not, in relative terms, more volatile than other flows in our sample of eight countries (half were developed countries and the rest were emerging markets).^ The implication therefore is that restricting FPI flows may be harmful in the sense that private capital may not be allocated efficiently worldwide to the detriment of capital poor economies. More to the point, any such restrictions would in fact be misguided. ^
Resumo:
The objective of this study was to provide empirical evidence on the effects of relative price uncertainty and political instability on private investment. My effort is expressed in a single-equation model using macroeconomic and socio-political data from eight Latin American countries for the period 1970–1996. Relative price uncertainty is measured by the implied volatility of the exchange rate and political instability is measured by using indicators of social unrest and political violence. ^ I found that, after controlling for other variables, relative price uncertainty and political instability are negatively associated with private investment. Macroeconomic and political stability are key ingredients for the achievement of a strong investment response. This highlights the need to develop the state and build a civil society in which citizens can participate in decision-making and express consent without generating social turmoil. At the same time the government needs to implement structural policies along with relative price adjustments to eliminate excess volatility in price movements in order to provide a stable environment for investment. ^
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
My dissertation investigates the financial linkages and transmission of economic shocks between the US and the smallest emerging markets (frontier markets). The first chapter sets up an empirical model that examines the impact of US market returns and conditional volatility on the returns and conditional volatilities of twenty-one frontier markets. The model is estimated via maximum likelihood; utilizes the GARCH model of errors, and is applied to daily country data from the MSCI Barra. We find limited, but statistically significant exposure of Frontier markets to shocks from the US. Our results suggest that it is not the lagged US market returns that have impact; rather it is the expected US market returns that influence frontier market returns The second chapter sets up an empirical time-varying parameter (TVP) model to explore the time-variation in the impact of mean US returns on mean Frontier market returns. The model utilizes the Kalman filter algorithm as well as the GARCH model of errors and is applied to daily country data from the MSCI Barra. The TVP model detects statistically significant time-variation in the impact of US returns and low, but statistically and quantitatively important impact of US market conditional volatility. The third chapter studies the risk-return relationship in twenty Frontier country stock markets by setting up an international version of the intertemporal capital asset pricing model. The systematic risk in this model comes from covariance of Frontier market stock index returns with world returns. Both the systematic risk and risk premium are time-varying in our model. We also incorporate own country variances as additional determinants of Frontier country returns. Our results suggest statistically significant impact of both world and own country risk in explaining Frontier country returns. Time-variation in the world risk premium is also found to be statistically significant for most Frontier market returns. However, own country risk is found to be quantitatively more important.
Resumo:
In finance literature many economic theories and models have been proposed to explain and estimate the relationship between risk and return. Assuming risk averseness and rational behavior on part of the investor, the models are developed which are supposed to help in forming efficient portfolios that either maximize (minimize) the expected rate of return (risk) for a given level of risk (rates of return). One of the most used models to form these efficient portfolios is the Sharpe's Capital Asset Pricing Model (CAPM). In the development of this model it is assumed that the investors have homogeneous expectations about the future probability distribution of the rates of return. That is, every investor assumes the same values of the parameters of the probability distribution. Likewise financial volatility homogeneity is commonly assumed, where volatility is taken as investment risk which is usually measured by the variance of the rates of return. Typically the square root of the variance is used to define financial volatility, furthermore it is also often assumed that the data generating process is made of independent and identically distributed random variables. This again implies that financial volatility is measured from homogeneous time series with stationary parameters. In this dissertation, we investigate the assumptions of homogeneity of market agents and provide evidence for the case of heterogeneity in market participants' information, objectives, and expectations about the parameters of the probability distribution of prices as given by the differences in the empirical distributions corresponding to different time scales, which in this study are associated with different classes of investors, as well as demonstrate that statistical properties of the underlying data generating processes including the volatility in the rates of return are quite heterogeneous. In other words, we provide empirical evidence against the traditional views about homogeneity using non-parametric wavelet analysis on trading data, The results show heterogeneity of financial volatility at different time scales, and time-scale is one of the most important aspects in which trading behavior differs. In fact we conclude that heterogeneity as posited by the Heterogeneous Markets Hypothesis is the norm and not the exception.
Resumo:
Exchange traded funds (ETFs) have increased significantly in popularity since they were first introduced in 1993. However, there is still much that is unknown about ETFs in the extant literature. This dissertation attempts to fill gaps in the ETF literature by using three related essays. In these three essays, we compare ETFs to closed ended mutual funds (CEFs) by decomposing the bid-ask spread into its three components; we look at the intraday shape of ETFs and compare it to the intraday shape of equities as well as examine the co-integration factor between ETFs on the London Stock Exchange and the New York Stock Exchange; we also examine the differences between leveraged ETFs and unleveraged ETFs by analyzing the impact of liquidity and volatility. These three essays are presented in Chapters 1, 2, and 3, respectively. ^ Chapter one uses the Huang and Stoll (1997) model to decompose the bid-ask spread in CEFs and ETFs for two distinct periods—a normal and a volatile period. We show a higher adverse selection component for CEFs than for ETFs without regard to volatility. However, both ETFs and CEFs increased in magnitude of the adverse selection component in the period of high volatility. Chapter two uses a mix of the Werner and Kleidon (1993) and the Hupperets and Menkveld (2002) methods to get the intraday shape of ETFs and analyze co-integration between London and New York trading. We find two different shapes for New York and London ETFs. There also appears to be evidence of co-integration in the overlapping two-hour trading period but not over the entire trading day for the two locations. The third chapter discusses the new class of ETFs called leveraged ETFs. We examine the liquidity and depth differences between unleveraged and leveraged ETFs at the aggregate level and when the leveraged ETFs are classified by the leveraged multiples of -3, -2, -1, 2, and 3, both for a normal and a volatile period. We find distinct differences between leveraged and unleveraged ETFs at the aggregate level, with leveraged ETFs having larger spreads than unleveraged ETFs. Furthermore, while both leveraged and unleveraged ETFs have larger spreads in high volatility, for the leveraged ETFs the change in magnitude is significantly larger than for the unleveraged ETFs. Among the multiples, the -2 leveraged ETF is the most pronounced in its liquidity characteristics, more so in volatile times. ^
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Prior finance literature lacks a comprehensive analysis of microstructure characteristics of U.S. futures markets due to the lack of data availability. Utilizing a unique data set for five different futures contract this dissertation fills this gap in the finance literature. In three essays price discovery, resiliency and the components of bid-ask spreads in electronic futures markets are examined. In order to provide comprehensive and robust analysis, both moderately volatile pre-crisis and volatile crisis periods are included in the analysis. The first essay entitled “Price Discovery and Liquidity Characteristics for U.S. Electronic Futures and ETF Markets” explores the price discovery process in U.S. futures and ETF markets. Hasbrouck’s information share method is applied to futures and ETF instruments. The information share results show that futures markets dominate the price discovery process. The results on the factors that affect the price discovery process show that when volatility increases, the price leadership of futures markets declines. Furthermore, when the relative size of bid-ask spread in one market increases, its information share decreases. The second essay, entitled “The Resiliency of Large Trades for U.S. Electronic Futures Markets,“ examines the effects of large trades in futures markets. How quickly prices and liquidity recovers after large trades is an important characteristic of financial markets. The price effects of large trades are greater during the crisis period compared to the pre-crisis period. Furthermore, relative to the pre-crisis period, during the crisis period it takes more trades until liquidity returns to the pre-block trade levels. The third essay, entitled “Components of Quoted Bid-Ask Spreads in U.S. Electronic Futures Markets,” investigates the bid-ask spread components in futures market. The components of bid-ask spreads is one of the most important subjects of microstructure studies. Utilizing Huang and Stoll’s (1997) method the third essay of this dissertation provides the first analysis of the components of quoted bid-ask spreads in U.S. electronic futures markets. The results show that order processing cost is the largest component of bid-ask spreads, followed by inventory holding costs. During the crisis period market makers increase bid-ask spreads due to increasing inventory holding and adverse selection risks.