5 resultados para Visual Recognition
em Digital Commons at Florida International University
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
Perception and recognition of faces are fundamental cognitive abilities that form a basis for our social interactions. Research has investigated face perception using a variety of methodologies across the lifespan. Habituation, novelty preference, and visual paired comparison paradigms are typically used to investigate face perception in young infants. Storybook recognition tasks and eyewitness lineup paradigms are generally used to investigate face perception in young children. These methodologies have introduced systematic differences including the use of linguistic information for children but not infants, greater memory load for children than infants, and longer exposure times to faces for infants than for older children, making comparisons across age difficult. Thus, research investigating infant and child perception of faces using common methods, measures, and stimuli is needed to better understand how face perception develops. According to predictions of the Intersensory Redundancy Hypothesis (IRH; Bahrick & Lickliter, 2000, 2002), in early development, perception of faces is enhanced in unimodal visual (i.e., silent dynamic face) rather than bimodal audiovisual (i.e., dynamic face with synchronous speech) stimulation. The current study investigated the development of face recognition across children of three ages: 5 – 6 months, 18 – 24 months, and 3.5 – 4 years, using the novelty preference paradigm and the same stimuli for all age groups. It also assessed the role of modality (unimodal visual versus bimodal audiovisual) and memory load (low versus high) on face recognition. It was hypothesized that face recognition would improve across age and would be enhanced in unimodal visual stimulation with a low memory load. Results demonstrated a developmental trend (F(2, 90) = 5.00, p = 0.009) with older children showing significantly better recognition of faces than younger children. In contrast to predictions, no differences were found as a function of modality of presentation (bimodal audiovisual versus unimodal visual) or memory load (low versus high). This study was the first to demonstrate a developmental improvement in face recognition from infancy through childhood using common methods, measures and stimuli consistent across age.
Resumo:
Novel predator introductions are thought to have a high impact on native prey, especially in freshwater systems. Prey may fail to recognize predators as a threat, or show inappropriate or ineffective responses. The ability of prey to recognize and respond appropriately to novel predators may depend on the prey’s use of general or specific cues to detect predation threats.We used laboratory experiments to examine the ability of three native Everglades prey species (Eastern mosquitofish, flagfish and riverine grass shrimp) to respond to the presence, as well as to the chemical and visual cues of a native predator (warmouth) and a recentlyintroduced non-native predator (African jewelfish). We used prey from populations that had not previously encountered jewelfish. Despite this novelty, the native warmouth and nonnative jewelfish had overall similar predatory effects, except on mosquitofish, which suffered higher warmouth predation. When predators were present, the three prey taxa showed consistent and strong responses to the non-native jewelfish, which were similar in magnitude to the responses exhibited to the native warmouth. When cues were presented, fish prey responded largely to chemical cues, while shrimp showed no response to either chemical or visual cues. Overall, responses by mosquitofish and flagfish to chemical cues indicated low differentiation among cue types, with similar responses to general and specific cues. The fact that antipredator behaviours were similar toward native and non-native predators suggests that the susceptibility to a novel fish predator may be similar to that of native fishes, and prey may overcome predator novelty, at least when predators are confamilial to other common and longer-established non-native threats.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.